Journal of Solid State Electrochemistry

, Volume 17, Issue 5, pp 1357–1368 | Cite as

Effect of alkaline and alkaline–earth cations on the supercapacitor performance of MnO2 with various crystallographic structures

  • Chen-Chen Ji
  • Mao-Wen Xu
  • Shu-Juan Bao
  • Chang-Jun Cai
  • Rui-Ying Wang
  • Dian-Zeng Jia
Original Paper


The electrochemical performances of the α-, γ-, and δ-MnO2 with different crystallographic structures were systematically investigated in 0.5 mol/L Li2SO4, 0.5 mol/L Na2SO4, 1 mol/L Ca(NO3)2, and 1 mol/L Mg(NO3)2 electrolytes. The results showed that the electrochemical performances of the manganese dioxides depended strongly on the crystallographic structures of MnO2 as well as the cation in the electrolytes. Because the δ-MnO2 consists with layers of structure and the interlayer separation is 7 Å, which is suitable for insertion/extraction of some alkaline and alkaline–earth cations, the δ-MnO2 electrode showed the higher specific capacitance than that of α-MnO2 and γ-MnO2. We also found that the α-, γ-, and δ-MnO2 electrodes in the Mg(NO3)2 electrolyte showed a higher specific capacitance, while all the α-, γ-, and δ-MnO2 electrodes in the Li2SO4 electrolyte exhibited a better cycle life. The reason for the different behavior of Li+ and Mg2+ during the charge/discharge process can be ascribed to the charge effect of the cations in the electrolytes. The ex situ X-ray diffraction (XRD) and long-time cyclic voltammogram measurements were used to systematically study the energy storage mechanism of MnO2-based electrodes. A progressive crystallinity loss of the materials is also observed upon potential cycling at the oxidized states. A reasonable charge/discharge mechanism is proposed in this work.


Alkaline cations Alkaline–earth cations MnO2 Supercapacitor performance Various crystallographic structures 



We acknowledge the financial support from National Natural Science Foundation of China (20963011, 21063014 and 21163021), Natural Science Foundation of Xinjiang (2011211A001), and Open Project Program of Xinjiang Laboratory of Advanced Functional Materials (XJDX0902-2010-09).


  1. 1.
    Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172CrossRefGoogle Scholar
  2. 2.
    Pang SC, Wee BH, Chin SF (2011) The capacitive behaviors of manganese dioxide thin-film electrochemical capacitor prototypes. International Journal of Electrochemistry 2011:1–10CrossRefGoogle Scholar
  3. 3.
    Beidaghi M, Wang Z, Gu L, Wang C (2012) Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes. J Solid State Electrochem 16:3341–3348CrossRefGoogle Scholar
  4. 4.
    Hastak RS, Sivaraman P, Potphode DD, Shashidhara K, Samui AB (2012) High temperature all solid state supercapacitor based on multi-walled carbon nanotubes and poly[2,5 benzimidazole]. J Solid State Electrochem 16:3215–3226CrossRefGoogle Scholar
  5. 5.
    Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027CrossRefGoogle Scholar
  6. 6.
    Yuan CZ, Gao B, Shen LF, Yang SD, Hao L, Lu XJ, Zhang F, Zhang LJ, Zhang XG (2010) Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale 3:529–545CrossRefGoogle Scholar
  7. 7.
    Zhai D, Li B, Xu C, Du H, He Y, Wei C, Kang F (2011) A study on charge storage mechanism of α-MnO2 by occupying tunnels with metal cations (Ba2+, K+). J Power Sources 196:7860–7867CrossRefGoogle Scholar
  8. 8.
    Li GR, Feng ZP, Ou YN, Wu D, Fu R, Tong Y-X (2010) Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. Langmuir 26:2209–2213CrossRefGoogle Scholar
  9. 9.
    Wang Y, Yuan A, Wang X (2008) Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors. J Solid State Electrochem 12:1101–1107CrossRefGoogle Scholar
  10. 10.
    Beaudrouet E, Salle ALGL, Guyomard D (2009) Nanostructured manganese dioxides: synthesis and properties as supercapacitor electrode materials. Electrochim Acta 54:1240–1248CrossRefGoogle Scholar
  11. 11.
    Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417CrossRefGoogle Scholar
  12. 12.
    Ghodbane O, Pascal JL, Fdr F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139CrossRefGoogle Scholar
  13. 13.
    Ragupathy P, Park DH, Campet G, Vasan HN, Hwang SJ, Choy J-H, Munichandraiah N (2009) Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J Phys Chem C 113:6303–6309CrossRefGoogle Scholar
  14. 14.
    Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830CrossRefGoogle Scholar
  15. 15.
    Guo S, Wang F, Chen H, Ren H, Wang R, Pan X (2012) Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes. J Solid State Electrochem 16:3355–3362CrossRefGoogle Scholar
  16. 16.
    Kuo SL, Wu NL (2006) Investigation of pseudocapacitive charge-storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes. J Electrochem Soc 153:A1317–A1324CrossRefGoogle Scholar
  17. 17.
    Wang DW, Li F, Liu M, Lu GQ, Cheng H-M (2008) 3D Aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 47:373–376CrossRefGoogle Scholar
  18. 18.
    Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214CrossRefGoogle Scholar
  19. 19.
    Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952CrossRefGoogle Scholar
  20. 20.
    Xie X, Gao L (2007) Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 45:2365–2373CrossRefGoogle Scholar
  21. 21.
    Yang X, Yg W, Hm X, Yy X (2007) Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor. Electrochim Acta 53:752–757CrossRefGoogle Scholar
  22. 22.
    Yuan A, Wang X, Wang Y, Hu J (2010) Comparison of nano-MnO2 derived from different manganese sources and influence of active material weight ratio on performance of nano MnO2/activated carbon supercapacitor. Energy Convers Manage 51:2588–2594CrossRefGoogle Scholar
  23. 23.
    Xu C, Du H, Li B, Kang F, Zengc Y (2009) Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations. J Electrochem Soc 156:A73–A78CrossRefGoogle Scholar
  24. 24.
    Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: effects of physisorbed water and proton conduction. Electrochim Acta 53:4607–4614CrossRefGoogle Scholar
  25. 25.
    Pang SC, Chin SF, Ling CY (2011) Controlled synthesis of manganese dioxide nanostructures via a facile hydrothermal route. J Nanomaterials 2012:1–7CrossRefGoogle Scholar
  26. 26.
    Wei W, Cui X, Chen W, Ivey DG (2009) Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. J Power Sources 186:543–550CrossRefGoogle Scholar
  27. 27.
    Xu C, Kang F, Li B, Du H (2010) Recent process on manganese dioxide supercapacitors. J MaterRes 25:1421–1432Google Scholar
  28. 28.
    Ghodbane O, Ataherian F, Wu NL, Favier F (2012) In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. J Power Sources 206:454–462CrossRefGoogle Scholar
  29. 29.
    Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRefGoogle Scholar
  30. 30.
    Xua C, Wei C, Li B, Kang F, Guan Z (2011) Charge storage mechanism of manganese dioxide for capacitor application: effect of the mild electrolytes containing alkaline and alkaline–earth metal cations. J Power Sources 196:7854–7859CrossRefGoogle Scholar
  31. 31.
    Athoul L, Moser F, Dugas R, Crosnier O, Blanger D, Brousse T (2008) Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J Phys Chem C 112:7270–7277CrossRefGoogle Scholar
  32. 32.
    Wu MS, Guo ZS, Jow JJ (2010) Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 114:21861–21867CrossRefGoogle Scholar
  33. 33.
    Xu C, Du H, Li B, Kang F, Zengc Y (2009) Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline–earth cations. J Electrochem Soc 156:A435–A441CrossRefGoogle Scholar
  34. 34.
    Li B, Rong G, Xie Y, Huang L, Feng C (2006) Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg Chem 45:6404–6410CrossRefGoogle Scholar
  35. 35.
    Bao SJ, Li CM, Li HL, Luongc JHT (2007) Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources. J Power Sources 164:885–889CrossRefGoogle Scholar
  36. 36.
    Gao T, Glerup M, Krumeich F, Nesper R, Fjellvåg H, Norby P (2008) Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J Phys Chem C 112:13134–13140CrossRefGoogle Scholar
  37. 37.
    Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147CrossRefGoogle Scholar
  38. 38.
    Benhaddad L, Makhloufi L, Messaoudi B, Rahmouni K, Takenouti H (2009) Reactivity of nanostructured MnO2 in alkaline medium studied with a micro-cavity electrode: effect of synthesizing temperature. ACS Appl Mater Interfaces 1:424–432CrossRefGoogle Scholar
  39. 39.
    Xu MW, Zhao DD, Bao SJ, Li HL (2007) Mesoporous amorphous MnO2 as electrode material for supercapacitor. J Solid State Electrochem 11:1101–1107CrossRefGoogle Scholar
  40. 40.
    Kanoh H, Tang W, Makita Y, Ooi K (1997) Electrochemical intercalation of alkali-metal ions into birnessite-type manganese oxide in aqueous solution. Langmuir 13:6845–6849CrossRefGoogle Scholar
  41. 41.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767Google Scholar
  42. 42.
    Dean JA (1992) Lange’s handbook of chemistry. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chen-Chen Ji
    • 1
  • Mao-Wen Xu
    • 2
  • Shu-Juan Bao
    • 1
  • Chang-Jun Cai
    • 1
  • Rui-Ying Wang
    • 1
  • Dian-Zeng Jia
    • 1
  1. 1.Key Laboratory of Material and Technology for Clean Energy, Ministry of Education; Key Laboratory of Advanced Functional Materials, Xinjiang Autonomous Region; Institute of Applied ChemistryXinjiang UniversityUrumqiPeople’s Republic of China
  2. 2.Texas Materials InstituteUniversity of Texas at AustinAustinUSA

Personalised recommendations