Journal of Solid State Electrochemistry

, Volume 17, Issue 4, pp 961–968 | Cite as

Porous Si coated with S-doped carbon as anode material for lithium ion batteries

  • Lu Yue
  • Haoxiang Zhong
  • Daoping Tang
  • Lingzhi Zhang
Original Paper


A novel porous Si/S-doped carbon composite was prepared by a magnesiothermic reaction of mesoporous SiO2, subsequently coating with a sulfur-containing polymer-poly(3,4-ethylene dioxythiophene), and a post-carbonization process. The as-prepared Si composite was homogeneously coated with disordered S-doped carbon with 2.6 wt.% S in the composite and retained a high surface area of 58.8 m2 g−1. The Si/S-doped carbon composite exhibited superior electrochemical performance and long cycle life as an anode material in lithium ion cells, showing a stable reversible capacity of 450 mAh g−1 even at a high current rate of 6,000 mA g−1.


Porous Si Magnesiothermic reaction S-doped carbon Lithium ion battery 



This work was supported by the National Science Foundation of China (50973112), the Hundred Talents Program of Chinese Academy of Sciences (CAS), CAS—Guangdong Collaboration Program (20108), and Guangzhou Municipal Science & Technology Project (11A44061500).


  1. 1.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763CrossRefGoogle Scholar
  2. 2.
    Hossain S, Kim YK, Saleh Y, Loutfy R (2003) Comparative studies of MCMB and C-C composite as anodes for lithium-ion battery systems. J Power Sources 114:264–276CrossRefGoogle Scholar
  3. 3.
    Trill J-H, Tao C, Winter M, Passerini S, Eckert H (2011) NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries. J Solid State Electrochem 15:349–356CrossRefGoogle Scholar
  4. 4.
    Kim BC, Uono H, Satou T, Fuse T, Ishihara T, Senna MUM (2005) Cyclic properties of Si-Cu/Carbon nanocomposite anodes for Li-ion secondary batteries. J Electrochem Soc 152:A523–A526CrossRefGoogle Scholar
  5. 5.
    Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) Structural and electrochemical study of the reaction of. lithium withsilicon nanowires. J Power Sources 189:34–39Google Scholar
  6. 6.
    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954CrossRefGoogle Scholar
  7. 7.
    Fang DZ, Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2010) Pore size control of ultrathin silicon membranes by rapid thermal carbonization. Nano Lett 10:3904–3908CrossRefGoogle Scholar
  8. 8.
    Chen H, Dong Z, Fu Y, Yang Y (2010) Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries. J Solid State Electrochem 14:1829–1834CrossRefGoogle Scholar
  9. 9.
    Chen BB, Xu Q, Zhao X, Zhu X, Kong M, Meng G (2010) Branched silicon nanotubes and metal nanowires via AAO-Template-Assistant Approach. Adv Funct Mater 20:3791–3796CrossRefGoogle Scholar
  10. 10.
    Kim H, Seo M, Park M-H, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed 49:2146–2149CrossRefGoogle Scholar
  11. 11.
    Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175CrossRefGoogle Scholar
  12. 12.
    Gao P, Jia H, Yang J, Nuli Y, Wang J, Chen J (2011) Three-dimensional porous silicon–MWNT heterostructure with superior lithium storage performance. Phys Chem Chem Phys 13:20108–20111CrossRefGoogle Scholar
  13. 13.
    Lu Z, Zhu J, Sim D, Zhou W, Shi W, Hng HH, Yan Q (2011) Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem Mater 23:5293–5295CrossRefGoogle Scholar
  14. 14.
    Chen D, Mei X, Ji G, Lu M, Xie J, Lu J, Lee JY (2012) Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew Chem Int Ed 51:2409–2413CrossRefGoogle Scholar
  15. 15.
    Chen H, Xiao Y, Wang L, Yang Y (2011) Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sources 196:6657–6662CrossRefGoogle Scholar
  16. 16.
    Liu Y, Chen B, Cao F, Chan HLW, Zhao X, Yuan J (2011) One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries. J Mater Chem 21:17083–17086CrossRefGoogle Scholar
  17. 17.
    Yu BY, Gu L, Zhu C, Tsukimoto S, van Aken PA, Maier J (2010) Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv Mater 22:2247–2250CrossRefGoogle Scholar
  18. 18.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRefGoogle Scholar
  19. 19.
    Zhang HP, Yang LC, Fu LJ, Cao Q, Sun DL, Wu YP, Holze R (2009) Core-shell structured electrode materials for lithium ion batteries. J Solid State Electrochem 13:1521–1527CrossRefGoogle Scholar
  20. 20.
    Yue L, Wang S, Zhao X, Zhang L (2012) Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode. J Mater Chem 22:1094–1099CrossRefGoogle Scholar
  21. 21.
    Santos V, Zeni M, Bergmann CP, Hohemberger JM (2008) Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol-gel process. Rev Adv Mater Sci 17:62–70Google Scholar
  22. 22.
    Alvarez A, Guzmán C, Carbone A, Saccà A, Gatto I, Pedicini R, Passalacqua E, Nava R, Ornelas R, Ledesma-García J, Arriaga LG (2011) Composite membranes based on micro and mesostructured silica: a comparison of physicochemical and transport properties. J Power Sources 196:5394–5401CrossRefGoogle Scholar
  23. 23.
    Louwet F, Groenendaal L, Dhaen J, Manca J, Luppen JV, Verdonck E, Leenders L (2003) PEDOT/PSS: synthesis, characterization, properties and applications. Synthetic Met 135:115–117CrossRefGoogle Scholar
  24. 24.
    Sun DC, Sun DS (2009) The synthesis and characterization of electrical and magnetic nanocomposite: PEDOT/PSS-Fe3O4. Mater Chem Phys 118:288–292CrossRefGoogle Scholar
  25. 25.
    Qi HY, Huang GX, Bo H, Xu GL, Liu LB, Jin ZP (2012) Experimental investigation and thermodynamic assessment of the Mg-Zn-Gd system focused on Mg-rich corner. J Mater Sci 47:1319–1330CrossRefGoogle Scholar
  26. 26.
    Aramendía MA, Benítez JA, Borau V, Jiménez C, Marinas JM, Ruiz JR, Urbano F (1999) Study of MgO and Pt/MgO systems by XRD, TPR, and H-1 MAS NMR. Langmuir 15:1192–1197CrossRefGoogle Scholar
  27. 27.
    Saravanan R, Robert MC (2009) Local structure of the thermoelectric material Mg2Si using XRD. J Alloy Compd 479:26–31Google Scholar
  28. 28.
    Ng SH, Wang J, Wexler D, Chew SY, Liu HK (2007) Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem C 111:11131–11138CrossRefGoogle Scholar
  29. 29.
    Ji LW, Zhang XW (2009) Electrospun carbon nanofibers containing silicon particles as an energy-storage medium. Carbon 47:3219–3226CrossRefGoogle Scholar
  30. 30.
    Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R“Si(OR’)3 precursors. J Mol Struct 919:140–145CrossRefGoogle Scholar
  31. 31.
    Chen K, Bao ZH, Liu D, Zhu XR, Zhang ZH, Zhou B (2011) Confined synthesis and properties of porous silicon from silica aerogel templates by magnesiothermic reduction. Acta Phys-Chim Sin 27:2719–2725Google Scholar
  32. 32.
    Ogata YH, Tsuboi T, Sakka T, Naito S (2000) Oxidation of porous silicon in dry and wet environments under mild temperature conditions. J Porous Mat 7:63–66CrossRefGoogle Scholar
  33. 33.
    Hofman R, Westheim JGF, Pouwel I, Fransen T, Gellings PJ (1996) FTIR and XPS studies on corrosion-resistant SiO2 coatings as a function of the humidity during deposition. Surf Interface Anal 24:1–6CrossRefGoogle Scholar
  34. 34.
    Qiu CC, Wang JK, Mao SM, Guo WH, Cheng SJ, Wang YX (2010) Preparation of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDT/PSS) composite and its applications in anti-static coating. Polym Advan Technol 21:651–655Google Scholar
  35. 35.
    Salsamendi M, Marcilla R, Dobbelin M, Mecerreyes D, Pozo-Gonzalo C, Pomposo JA, Pacios R (2008) Simultaneous synthesis of gold nanoparticles and conducting poly(3,4-ethylenedioxythiophene) towards optoelectronic nanocomposites. Phys Status Solidi A 205:1451–1454CrossRefGoogle Scholar
  36. 36.
    Xin X, Zhou X, Wang F, Yao X, Xu X, Zhu Y, Liu Z (2012) A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. J Mater Chem 22:7724–7730CrossRefGoogle Scholar
  37. 37.
    Chew SY, Guo ZP, Wang JZ, Chen J, Munroe P, Ng SH, Zhao L, Liu HK (2007) Novel nano-silicon/polypyrrole composites for lithium storage. Electrochem Commun 9:941–946CrossRefGoogle Scholar
  38. 38.
    Meng CY, Chen JL, Lee SC, Chia CT (2006) Doping effects on the Raman spectra of silicon nanowires. Phys Rev B 73:245309-1–245309-6CrossRefGoogle Scholar
  39. 39.
    Katumba G, Mwakikunga BW, Mothibinyane TR (2008) FTIR and Raman spectroscopy of carbon nanoparticles in SiO2, ZnO and NiO matrices. Nanoscale Res Lett 3:421–426CrossRefGoogle Scholar
  40. 40.
    Taziwa R, Meyer EL, Chinyama KG (2012) Raman temperature dependence analysis of carbon-doped titanium dioxide nanoparticles synthesized by ultrasonic spray pyrolysis technique. J Mater Sci 47:1531–1540CrossRefGoogle Scholar
  41. 41.
    Ng SH, Wang JZ, Wexler D, Konstantinov K, Guo ZP, Liu HK (2006) Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Edit 45:6896–6899CrossRefGoogle Scholar
  42. 42.
    Xu YH, Yin GP, Ma YL, Zuo PJ, Cheng XQ (2010) Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J Mater Chem 20:3216–3220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lu Yue
    • 1
    • 2
  • Haoxiang Zhong
    • 1
  • Daoping Tang
    • 1
  • Lingzhi Zhang
    • 1
  1. 1.Key Laboratory of Renewable Energy and Natural Gas Hydrate, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations