Journal of Solid State Electrochemistry

, Volume 17, Issue 1, pp 175–182 | Cite as

Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors

  • Meredith C. K. SellersEmail author
  • Benjamin M. Castle
  • Charles P. Marsh
Original Paper


Three-dimensional manganese dioxide (MnO2)-functionalized multiwalled carbon nanotube (MWCNT) electrodes have been produced by a simple and scalable thermal decomposition process. The electrodes are prepared by treating planar MWCNT sheets with manganese(II) nitrate (Mn(NO3)2) solution and annealing at low temperature (200–300 °C) and ambient pressure. The morphology, chemical composition, and structure of the resulting matrices have been investigated with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction. Supercapacitors assembled with three-dimensional electrodes exhibit a 14-fold increase in specific capacitance (C sp) in comparison to those containing pristine, two-dimensional MWCNT electrodes. C sp varies linearly with Mn(NO3)2 thermal decomposition temperature (from 100 to 61 F/g at 0.2 A/g), a trend that is discussed in the context of nitrate reaction chemistry and MWCNT structure. This efficient and promising approach allows for simultaneous enhancement of electrode–electrolyte contact area and incorporation of redox-based charge storage within electrochemical capacitors.


Electrochemical capacitor Carbon nanotube Manganese dioxide Pseudocapacitance 



This research was funded by the US Army Corps of Engineers, Engineer Research and Development Center, Section 219 Center Directed Research program. Dr. Sellers is supported by a postdoctoral fellowship administered by the Oak Ridge Institute for Science and Education (ORISE). Materials characterization was performed at the Center for Microanalysis of Materials at the Frederick Seitz Materials Research Laboratory, University of Illinois, which is partially supported by the US Department of Energy (DE-FG02-07ER46453 and DE-FG02-07ER46471) and by the National Science Foundation. We are grateful for the assistance of Dr. Rick Haasch, Niels Zussblatt, Dr. Julio Soares, and Robert Weber.


  1. 1.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850CrossRefGoogle Scholar
  2. 2.
    Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166CrossRefGoogle Scholar
  3. 3.
    Weddell AS, Merrett GV, Kazmierski TJ, Al-Hashimi BM (2011) Accurate supercapacitor modeling for energy-harvesting wireless sensor nodes. IEEE Trans Circuits Syst II 58:911–915CrossRefGoogle Scholar
  4. 4.
    Choi M-E, Kim S-W, Seo SW (2012) Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Trans Smart Grid 3:463–471CrossRefGoogle Scholar
  5. 5.
    Zhao X, Mendoza Sanchez B, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839CrossRefGoogle Scholar
  6. 6.
    Bordjiba T, Mohamedi M, Dao LH (2008) New class of carbon-nanotube aerogel electrodes for electrochemical power sources. Adv Mater 20:815–819CrossRefGoogle Scholar
  7. 7.
    Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater. doi: 10.1002/adma.201200197
  8. 8.
    Yin S, Niu Z, Chen X (2012) Assembly of graphene sheets into 3D macroscopic structures. Small. doi: 10.1002/smll.201102614
  9. 9.
    Hiralal P, Wang H, Unalan HE, Liu Y, Rouvala M, Wei D, Andrew P, Amaratunga GAJ (2011) Enhanced supercapacitors from hierarchical carbon nanotube and nanohorn architectures. J Mater Chem 21:17810–17815CrossRefGoogle Scholar
  10. 10.
    Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654CrossRefGoogle Scholar
  11. 11.
    Lashmore DS, Brown JJ, Chaffee JK, Resnicoff B, Antoinette P (2011) Systems and methods for formation and harvesting of nanofibrous materials. US Patent 7,993,620, Aug 9, 2011Google Scholar
  12. 12.
    Sellers MCK, Zussblatt NP, Friedl AP, Marsh CP (2012) Design of flexible supercapacitors using metal oxide-decorated carbon nanotube sheet. In: Mater Res Soc Symp Proc, Boston, MAGoogle Scholar
  13. 13.
    Sellers MCK, Zussblatt NP, Marsh CP (2012) Potassium perruthenate-treated carbon nanotube sheets for flexible supercapacitors. Electrochem Commun 18:58–61CrossRefGoogle Scholar
  14. 14.
    Lu W, Hartman R, Qu L, Dai L (2011) Nanocomposite electrodes for high-performance supercapacitors. J Phys Chem Lett 2:655–660CrossRefGoogle Scholar
  15. 15.
    Zhang J, Chu W, Jiang J, Zhao XS (2011) Synthesis, characterization and capacitive performance of hydrous manganese dioxide nanostructures. Nanotechnology 22:125703CrossRefGoogle Scholar
  16. 16.
    Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F (2005) Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152:A229–A235CrossRefGoogle Scholar
  17. 17.
    Lee K-T, Wu N-L (2008) Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte. J Power Sources 179:430–434CrossRefGoogle Scholar
  18. 18.
    Chen P, Chen H, Qiu J, Zhou C (2010) Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res 3:594–603CrossRefGoogle Scholar
  19. 19.
    Jin X, Zhou W, Zhang S, Chen GZ (2007) Nanoscale microelectrochemical cells on carbon nanotubes. Small 3:1513–1517CrossRefGoogle Scholar
  20. 20.
    Long JW, Fischer AE, Rolison DR (2010) Nanoscale manganese oxide on ultraporous carbon architecture. US Patent 7,724,500, May 25, 2010Google Scholar
  21. 21.
    Fan Z, Chen J, Wang M, Cui K, Zhou H, Kuang Y (2006) Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials. Diam Relat Mater 15:1478–1483CrossRefGoogle Scholar
  22. 22.
    De Bruijin TJW, De Jong WA, Van Den Berg PJ (1981) Thermal decomposition of aqueous manganese nitrate solutions and anhydrous manganese nitrate. Thermochim Acta 45:278–314Google Scholar
  23. 23.
    Gallagher PK, Schrey F, Prescott B (1970) The thermal decomposition of aqueous manganese (II) nitrate solution. Thermochim Acta 2:405–412CrossRefGoogle Scholar
  24. 24.
    Nesbitt HW, Banerjee D (1998) Interpretation of XPS Mn(2p) spectra of Mn oxyhydrides and constraints on the mechanism of MnO2 precipitation. Am Mineral 83:305–315Google Scholar
  25. 25.
    Rosenthal D, Ruta M, Schlogl R, Kiwi-Minsker L (2010) Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers. Carbon 48:1835–1843CrossRefGoogle Scholar
  26. 26.
    Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MSP, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121CrossRefGoogle Scholar
  27. 27.
    Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24–36CrossRefGoogle Scholar
  28. 28.
    Ma M, Osswald S, Gogotsi Y, Winey KI (2009) An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer. Nanotechnology 20:335703CrossRefGoogle Scholar
  29. 29.
    Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38:728–736CrossRefGoogle Scholar
  30. 30.
    Julien C, Massot M, Rangan S, Lemal M, Guyomard D (2002) Study of structural defects in γ-MnO2 by Raman spectroscopy. J Raman Spectrosc 33:223–228CrossRefGoogle Scholar
  31. 31.
    Hu L, Pasta M, La Mantia F, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714CrossRefGoogle Scholar
  32. 32.
    Song M-S, Lee KM, Lee YR, Kim IY, Kim TW, Gunjakar JL, Hwang S-J (2010) Porously assembled 2D nanosheets of alkali metal manganese oxides with highly reversible pseudocapacitance behaviors. J Phys Chem C 114:22134–22140CrossRefGoogle Scholar
  33. 33.
    Chou S-L, Wang J-Z, Chew S-Y, Liu H-K, Dou S-X (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 2008:1724–1727CrossRefGoogle Scholar
  34. 34.
    Tang W, Hou YY, Wang XJ, Bai Y, Zhu YS, Sun H, Yue YB, Wu YP, Zhu K, Holze R (2012) A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197:330–333CrossRefGoogle Scholar
  35. 35.
    Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl Mater Interfaces 4:1058–1064CrossRefGoogle Scholar
  36. 36.
    Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Quin L-C (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925CrossRefGoogle Scholar
  37. 37.
    Gao P-C, Lu A-H, Li W-C (2011) Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor. J Power Sources 196(8):4095–4101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2012

Authors and Affiliations

  • Meredith C. K. Sellers
    • 1
    Email author
  • Benjamin M. Castle
    • 1
  • Charles P. Marsh
    • 1
    • 2
  1. 1.Construction Engineering Research LaboratoryUS Army Engineer Research and Development CenterChampaignUSA
  2. 2.Department of Nuclear, Plasma, and Radiological EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations