Journal of Solid State Electrochemistry

, Volume 17, Issue 3, pp 627–633 | Cite as

Enantioselective recognition of penicillamine enantiomers on bovine serum albumin-modified glassy carbon electrode

  • Yonghua Wang
  • Qian Han
  • Qing Zhang
  • Yihan Huang
  • Liju Guo
  • Yingzi Fu
Original Paper


As a natural chiral selector, bovine serum albumin (BSA) has been used to recognize penicillamine (Pen) enantiomers through electrochemical methods. The recognition and assay rely on the stereoselectivity of BSA embedded in ultrathin Al2O3 sol–gel film coated on the surface of glassy carbon electrode (BSA/GCE). The enantioselective interaction between Pen enantiomers and BSA was monitored by cyclic voltammetry and electrochemical impedance spectroscopy measurements, from which larger response signals were obtained from d-Pen. The factors influencing the performance of the modified biosensor were also investigated. The association constant (K) was calculated to be 1.93 × 104 L mol−1 for d-Pen and 1.20 × 103 L mol−1 for l-Pen. A good linear response was exhibited with the concentration of Pen enantiomers by BSA/GCE over the range of 1 × 10−8–1 × 10−1 mol L−1 with a detection limit of 3.31 × 10−9 mol L−1.


Bovine serum albumin Penicillamine enantiomers Stereoselectivity Chiral recognition 



This work was supported by the National Natural Science Foundation of China (20972128).

Supplementary material

10008_2012_1859_MOESM1_ESM.doc (42 kb)
Scheme 1 Processes summary of BSA electrochemical recognition of Pen enantiomers based on the enantioselective adsorption. (a) bare GCE, (b) BSA/GCE, (c) L-Pen/BSA/GCE, (d) D-Pen/BSA/GCE (DOC 42 kb)


  1. 1.
    Walshe JM (1965) A new oral therapy for Wilson’s disease. Am J Med 4:487–495Google Scholar
  2. 2.
    Karara A, Dishman E, Falckll JR, Capdevila JH (1991) A novel class of cellular glycerolipids containing epoxidized arachidonatemoieties. J Biol Chem 266:7561–7569Google Scholar
  3. 3.
    Muskal N, Turyan I, Shurky A, Mandler D (1995) Chiral self-assembled monolayers. J Am Chem Soc 117:1147–1148CrossRefGoogle Scholar
  4. 4.
    Kean WF, Lock CJL, Howard-Lock HEL (1991) Chirality in antirheumatic drugs. Chirality 338:1565–1571Google Scholar
  5. 5.
    Gubitz G (1990) Separation of drug eantiomers by HPLC using chiral stationary phases-a selective review. Chromtographia 30:555–564CrossRefGoogle Scholar
  6. 6.
    Andersson RA, Andersson S (1989) Influence of amphiphilic mobile phase additives upon the direct liquid chromatographic optical resolution by means of BSA-based chiral sorbents. J Liq Chromatogr 12:354–357Google Scholar
  7. 7.
    Wang YX, Yin XL, Shi MH, Li W, Zhang L, Kong JL (2006) Probing chiral amino acids at sub-picomolar level based on bovine serum albumin enantioselective films coupled with silver-enhanced gold nanoparticles. Talanta 69:1240–1245CrossRefGoogle Scholar
  8. 8.
    Su WC, Zhang WG, Zhang S, Fan J, Yin X, Luo ML, Ngc SC (2009) A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens Bioelectron 25:488–492CrossRefGoogle Scholar
  9. 9.
    Kiyohara S, Nakamura M, Saito K, Sugita K, Sugo T (1999) Binding of DL-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode. J Membr Sci 152:143–149CrossRefGoogle Scholar
  10. 10.
    Chen JL (2011) Molecularly bonded chitosan prepared as chiral stationary phases in open-tubular capillary electrochromatography: comparison with chitosan nanoparticles bonded to the polyacrylamide phase. Talanta 85:2330–2338CrossRefGoogle Scholar
  11. 11.
    Wiedmer SK, Bo T, Riekkola ML (2008) Phospholipid–protein coatings for chiral capillary electrochromatography. Anal Biochem 373:26–33CrossRefGoogle Scholar
  12. 12.
    Wang YX, Zhang F, Liang J, Li H, Kong JL (2007) A novel strategy for the determination of enantiomeric compositions of chiral compounds by chemometric analysis of the UV–vis spectra of bovine serum albumin receptor–ligand mixtures. Spectrochim Acta A 68:279–283CrossRefGoogle Scholar
  13. 13.
    Wei YL, Wang SF, Shuang SM, Dong C (2010) Chiral discrimination between d- and l-tryptophan based on the alteration of the fluorescence lifetimes by the chiral additives. Talanta 81:1800–1805CrossRefGoogle Scholar
  14. 14.
    Kumar CV (2001) Large chiral discrimination of a molecular probe by bovine serum albumin. Chem Commun 3:297–298CrossRefGoogle Scholar
  15. 15.
    Tanaka Y, Terabe SJ (2001) Recent advances in enantiomer separations by affinity capillary electrophoresis using proteins and peptides. Biochem Biophys Methods 48:103–116CrossRefGoogle Scholar
  16. 16.
    Masaru K, Sakai-Kato K, Matsumoto N (2002) A protein-encapsulation technique by the sol gel method for the preparation of monolithic columnsfor capillary electrochromatography. Anal Chem 74:1915–1921CrossRefGoogle Scholar
  17. 17.
    Zhang XQ, Deckert V, Steiger B, Hirayama MKN (2004) Covalent binding of biorecognition groups to solids using poly(hydromethylsiloxane) as linkage. Talanta 63:159–163CrossRefGoogle Scholar
  18. 18.
    Kharitonov AB, Zayats M, Alfonta L, Katz E (2001) A novel ISFET-based NAD+-dependent enzyme sensor for lactate. Sensors Actuats B 76:203–210CrossRefGoogle Scholar
  19. 19.
    Edmiston PL, Wambolt CL, Smith MK, Saavedra SS (1994) Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses. J Colloid Interf Sci 163:395–406CrossRefGoogle Scholar
  20. 20.
    Zuo XB, Wang KM, Zhou LJ, Huang SS (2003) Separation and determination synchronously by multichannel modefiltered light capillary electrochromatography. Electrophoresis 24:3202–3206CrossRefGoogle Scholar
  21. 21.
    Jiang DC, Tang J, Liu BH, Yang PY (2003) Ultrathin alumina sol-gel-derived films: allowing direct detection of the liver fibrosis markers by capacitance measurement. Anal Chem 75:4578–4584CrossRefGoogle Scholar
  22. 22.
    Rao TP, Metilda P, Gladis JM (2006) Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination—an overview. Talanta 68:1047–1064CrossRefGoogle Scholar
  23. 23.
    Masaru K, Kumiko SK, Matsumoto N, Toyo’oka T (2002) A protein-encapsulation technique by the sol gel method for the preparation of monolithic columns for capillary electrochromatography. Anal Chem 74:1915–1921CrossRefGoogle Scholar
  24. 24.
    Alfonta L, Bardea A, Khersonsky O, Katz E, Willner I (2001) Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. Biosens Bioelectron 16:675–687CrossRefGoogle Scholar
  25. 25.
    Liao YH, Yuan R, Chai YQ, Zhuo Y, Yang X (2010) Study on an amperometric immunosensor based on Nafion–cysteine composite membrane for detection of carcinoembryonic antigen. Anal Biochem 402:47–53CrossRefGoogle Scholar
  26. 26.
    Xu Y, Cai H, He PG, Fang YZ (2004) Probing DNA Hybridization by Impedance Measurement Based on CdS-Oligonucleotide Nanoconjugates. Electroanalysis 16:150–155CrossRefGoogle Scholar
  27. 27.
    Yang Q, Liang J, Han H (2009) Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. J Phys Chem B 113:10454–10458CrossRefGoogle Scholar
  28. 28.
    Wang F, Huang W, Dai ZX (2008) Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J Mol Struct 875:509–514CrossRefGoogle Scholar
  29. 29.
    Wu YH, Ji XB, Hu SS (2004) Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochemistry 64:91–97CrossRefGoogle Scholar
  30. 30.
    Wu H, Zhao XJ, Wang P, Dai Z, Zou XY (2011) Electrochemical site marker competitive method for probing the binding site and binding mode between bovine serum albumin and alizarin red S. Electrochim Actor 56:4181–4187CrossRefGoogle Scholar
  31. 31.
    Han XL, Tian FF, Ge YS, Jiang FL, Lai L, Li DW, Yu QLY, Wang J, Lin C, Liu Y (2012) Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin: a comparative study between BSA and HSA. J Photochem Photobiol B 109:1–11CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yonghua Wang
    • 1
  • Qian Han
    • 1
  • Qing Zhang
    • 1
  • Yihan Huang
    • 1
  • Liju Guo
    • 1
  • Yingzi Fu
    • 1
  1. 1.Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations