Journal of Solid State Electrochemistry

, Volume 17, Issue 1, pp 63–68 | Cite as

Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO2 electrode

  • Reza Ojani
  • Jahan-Bakhsh Raoof
  • Akbar Khanmohammadi
  • Ebrahim Zarei
Original Paper


The widely utilization of phenol and its derivatives such as 3-nitrophenol (3-NP) has led to the worldwide pollution in the environment. In this study, Ti/TiO2 photoelectrode was prepared with anodic oxidation of Ti foil electrode and then the photoelectrocatalytic (PEC) degradation of 3-NP was performed via this electrode, comparing with photocatalytic (PC), electrooxidation and direct photolysis by ultraviolet light. A significant photoelectrochemical synergetic effect in 3-NP degradation was observed on the Ti/TiO2 electrode and rate constant for the PEC process of Ti/TiO2 electrode was about three times as high as its PC degradation process. 3-NP concentration monitoring was carried out with differential pulse voltammetry. Results showed that PEC degradation has highest effect on concentration decreasing of 3-NP at solution and degraded it about 38 %, while other processes degradation efficiencies were about 4, 7, and 12 % for electrooxidation, direct photolysis and photocatalytic degradation, respectively. Finally, effects of solution pH and applied potential on degradation efficiency were studied and results showed that optimum pH for degradation is equal 4.00 and optimum potential is 1.2 V vs. Ag|AgCl|KCl (3M) reference electrode.


Photocatalysis Photoelectrocatalysis Electrooxidation 3-nitrophenol Ti/TiO2 electrode 


  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Bard AJ (1982) J Phys Chem 86:172–177CrossRefGoogle Scholar
  3. 3.
    Gratzel M (1983) Energy resources through photochemistry and catalysis. Academic, New YorkGoogle Scholar
  4. 4.
    Kalyanasundaram K, Gratzel M, Pelizzetti E (1986) Coord Chem Rev 69:57–125CrossRefGoogle Scholar
  5. 5.
    Parmon VN, Zamareav KI (1989) In: Pelizzetti E, Serpone N (eds) Photocatalysis: fundamentals and applications. Wiley, New YorkGoogle Scholar
  6. 6.
    Pelizzetti E, Schiavello M (1991) Photochemical conversion and storage of solar energy. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  7. 7.
    Gao ZQ, Yang SG, Ta N, Sun C (2007) J Hazard Mater 145:424–430CrossRefGoogle Scholar
  8. 8.
    Liu ZY, Zhang XT, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) J Phys Chem C 112:253–259CrossRefGoogle Scholar
  9. 9.
    Wang X, Zhao HM, Quan X, Zhao YZ, Chen S (2009) J Hazard Mater 166:547–552CrossRefGoogle Scholar
  10. 10.
    Liang HC, Li XZ (2009) J Hazard Mater 162:1415–1422CrossRefGoogle Scholar
  11. 11.
    Liu YB, Li JH, Zhou BX, Bai J, Zheng Q, Zhang JL, Cai WM (2009) Environ Chem Lett 7:363–368CrossRefGoogle Scholar
  12. 12.
    Zheng Q, Zhou BX, Bai J, Li LH, Jin ZJ, Zhang JL, Li JH, Liu YB, Cai WM, Zhu XY (2008) Adv Mater 20:1044–1049CrossRefGoogle Scholar
  13. 13.
    Qiao S, Sun DD, Tay JH, Easton C (2003) Water Sci Technol 47:211–217Google Scholar
  14. 14.
    Us EPA (1976) Water quality criteria. US EPA, WashingtonGoogle Scholar
  15. 15.
    Pumaa GL, Bonob A, Krishnaiahb D, Collin JG (2008) J Hazard Mater 157:209–219CrossRefGoogle Scholar
  16. 16.
    Gao FF, Wang Y, Shi D, Zhang J, Wang MK, Jing XY, Baker RH, Wang P, Zakeeruddin SM, Gratzel M (2008) J Am Chem Soc 130:10720–10728CrossRefGoogle Scholar
  17. 17.
    Carneiro PA, Osugi ME, Sene JJ, Anderson MA, Zanoni MB (2004) Electrochim Acta 49:3807–3820CrossRefGoogle Scholar
  18. 18.
    Zanoni MB, Sene JJ, Anderson MA (2003) J Photochem Photobio A Chem 157:55–63CrossRefGoogle Scholar
  19. 19.
    Li JQ, Zheng L, Li LP, Xian YZ, Jin LT (2007) J Hazard Mater 139:72–78CrossRefGoogle Scholar
  20. 20.
    Li JQ, Zheng L, Li LP, Xian YZ, Jin LT (2006) Electrochim Acta 51:4942–4949CrossRefGoogle Scholar
  21. 21.
    Adewuyi YG (2005) Environ Sci Technol 39:8557–8570CrossRefGoogle Scholar
  22. 22.
    Berberidou C, Poulios I, Xekoukoulotakis NP, Mantzavinos D (2007) Appl Catal B Environ 74:63–72CrossRefGoogle Scholar
  23. 23.
    Priya MH, Madras G (2006) Ind Eng Chem Res 45:913–921CrossRefGoogle Scholar
  24. 24.
    Kaur S, Singh V (2007) Ultrason Sonochem 14:531–537CrossRefGoogle Scholar
  25. 25.
    Pérez NJB, Herrera MFS (2007) Ultrason Sonochem 14:589–595CrossRefGoogle Scholar
  26. 26.
    Kritikos DE, Xekoukoulotakis NP, Psillakis E, Mantzavinos D (2007) Water Res 41:2236–2246CrossRefGoogle Scholar
  27. 27.
    Li G, Qu J, Zhang X, Liu H (2006) J Mole Catal A Chemical 259:238–244CrossRefGoogle Scholar
  28. 28.
    Liu Y, Gan X, Zhou B, Xiong B, Li J, Dong C, Bai J, Cai W (2009) J Hazard Mater 171:678–683CrossRefGoogle Scholar
  29. 29.
    Nohara K, Hidaka H, Pelizzetti E, Serpone N (1997) Photochem Photobiol A Chem 102:265–272CrossRefGoogle Scholar
  30. 30.
    Poulios I, Tsachpinis I (1999) J Chem Technol Biotechnol 74:349–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Reza Ojani
    • 1
  • Jahan-Bakhsh Raoof
    • 1
  • Akbar Khanmohammadi
    • 1
  • Ebrahim Zarei
    • 1
  1. 1.Electroanalytical Chemistry Research Laboratory, Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations