Journal of Solid State Electrochemistry

, Volume 16, Issue 7, pp 2563–2568 | Cite as

The application of scanning electrochemical microscopy to the discovery of Pd–W electrocatalysts for the oxygen reduction reaction that demonstrate high activity, stability, and methanol tolerance

Original Paper

Abstract

An array of Pd–W alloys was fabricated, and the electrocatalytic activity of the alloys for the oxygen reduction reaction (ORR) in acidic media was screened by scanning electrochemical microscopy. The Pd0.7W0.3 showed the highest activity for the ORR, close to that for Pd0.8Co0.2 and Pt. A Pd–W electrocatalyst loaded on carbon black was formed by the NaBH4-reduction method, exhibiting high activity and stability, suggesting that it is a good candidate for the proton exchange membrane fuel cell cathode.

Keywords

Oxygen reduction reaction (ORR) Scanning electrochemical microscopy (SECM) Pd–W alloy electrocatalyst Fuel cells Combinatorial screening method 

References

  1. 1.
    Reeve RW, Christensen PA, Hamnnett A, Haydock SA, Roy SC (1998) J Electrochem Soc 145:3463–3471CrossRefGoogle Scholar
  2. 2.
    Reeve RW, Christensen PA, Dickinson AJ, Hamnett A, Scott K (2000) Electrochim Acta 45:4237–4250CrossRefGoogle Scholar
  3. 3.
    Cong HN, Abbassi KE, Chartier PJ (2002) J Electrochem Soc 149:A525–A530CrossRefGoogle Scholar
  4. 4.
    Alonso-Vante N, Malakhov IV, Nikitenko SG, Savinova ER, Kochubey DI (2002) Electrochim Acta 47:3807–3814CrossRefGoogle Scholar
  5. 5.
    Fernández JL, Mano N, Heller A, Bard AJ (2004) Angew Chem Int Ed 43:6355–6357CrossRefGoogle Scholar
  6. 6.
    Bron M, Hilgendorff M, Bogdanoff P (2002) J Appl Electrochem 32:211–216CrossRefGoogle Scholar
  7. 7.
    Bron M, Radnik J, Fieber-Erdmann M, Bogdanoff P, Fiechter SJ (2002) J Electroanal Chem 535:113–119CrossRefGoogle Scholar
  8. 8.
    Ralph TR, Hogarth MP (2002) Platinum Met Rev 46:3–14Google Scholar
  9. 9.
    Fernández JL, Bard AJ (2003) Anal Chem 75:2967–2974CrossRefGoogle Scholar
  10. 10.
    Fernández JL, White JM, Sun Y, Tang W, Henkelman G, Bard AJ (2006) Langmuir 22:10426–10431CrossRefGoogle Scholar
  11. 11.
    Fernández JL, Walsh DA, Bard AJ (2005) J Am Chem Soc 127:357–365CrossRefGoogle Scholar
  12. 12.
    Fernández JL, Raghuveer V, Manthiram A, Bard AJ (2005) J Am Chem Soc 127:13100–13101CrossRefGoogle Scholar
  13. 13.
    Walsh DA, Fernández JL, Bard AJ (2006) J Electrochem Soc 153:E99–E103CrossRefGoogle Scholar
  14. 14.
    Sun YM, Alpuche-Aviles M, Bard AJ, Zhou JP, White JM (2009) J Nanosci Nanotechnol 9:1281–1286CrossRefGoogle Scholar
  15. 15.
    Raghuveer V, Manthiram A, Bard AJ (2005) J Phys Chem B 109:22909–22912CrossRefGoogle Scholar
  16. 16.
    Yu TH, Sha Y, Merinov BV, Goddard WA (2010) J Phys Chem C 114:11527–11533CrossRefGoogle Scholar
  17. 17.
    Luigi P, Biago MB, Lorenzo A, Simona MT, Alessandro P (2008) Per Miner 77:63–73Google Scholar
  18. 18.
    Liu Z, Koh S, Yu C, Strasser PJ (2007) J Electrochem Soc 154:B1192–B1199CrossRefGoogle Scholar
  19. 19.
    Lin C-L, Sánchez-Sánchez CM, Bard AJ (2008) Electrochem. Solid-State Lett 11:B136–B139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Center for Electrochemistry, Department of Chemistry and BiochemistryThe University of Texas at AustinAustinUSA

Personalised recommendations