Advertisement

Journal of Solid State Electrochemistry

, Volume 16, Issue 11, pp 3449–3456 | Cite as

Pattern formation during electrodeposition of indium–cobalt alloys

  • I. Krastev
  • Ts. Dobrovolska
  • U. Lačnjevac
  • S. Nineva
Original Paper

Abstract

The investigations on the effect of the electrolysis conditions, including high speed electroplating, on the content, structure, morphology and some properties of electrodeposited In-Co alloys from citrate electrolytes are presented. It was shown that indium and cobalt could be successfully deposited from acid citrate electrolytes and deposition of alloys with indium content between 20 and 80 wt. % is possible. At high cobalt content, heterogeneous multiphase coatings with spatio-temporal structures are obtained. Spatio-temporal structures could be observed also during electrodeposition under intensive hydrodynamic flow and improved mass transport conditions at high current densities. The structures are obtained for the first time from silver- and cyanide-free non-alkaline stable electrolytes of a relatively simple composition.

Keywords

High Current Density Alloy Coating Hydrogen Evolution Reaction Indium Content Applied Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for the support of the project 436 BUL 113/97/0-4. They express their gratitude to Umicore Galvanotechnik GmbH, Germany for the given possibility to perform high-speed plating experiments in the Jet-cell.

References

  1. 1.
    Dobrovolska Ts, Veleva L, Krastev I, Zielonka A (2005) Composition and structure of silver-indium alloy coatings electrodeposited from cyanide electrolytes. J Electrochem Soc 152:C137–C142CrossRefGoogle Scholar
  2. 2.
    Nineva S, Dobrovolska T, Krastev I (2011) Electrodeposition of silver-cobalt coatings. The cyanide-pyrophosphate electrolyte. Bulg Chem Commun 43:96–104Google Scholar
  3. 3.
    Nineva S, Dobrovolska T, Krastev I (2011) Properties of electrodeposited silver-cobalt coatings. J Appl Electrochem 41:1397–1406CrossRefGoogle Scholar
  4. 4.
    Dobrovolska T, Krastev I, Jovic BM, Jovic VD, Beck G, Lacnjevac U, Zielonka A (2011) Phase identification in electrodeposited Ag-Cd alloys by anodic linear sweep voltammetry and X-ray diffraction techniques. Electrochim Acta 56:4344–4350CrossRefGoogle Scholar
  5. 5.
    Kristev I, Nikolova M (1986) Structural effects during the electrodeposition of silver-antimony alloys from ferrocyanide-thiocyanate electrolytes. J Appl Electrochem 16:875–878CrossRefGoogle Scholar
  6. 6.
    Krastev I, Valkova T, Zielonka A (2004) Structure and properties of electrodeposited silver-bismuth alloys. J Appl Electrochem 34:79–85CrossRefGoogle Scholar
  7. 7.
    Valkova T, Krastev I, Zielonka A (2010) Influence of the D(+)-glucose on the electrochemical deposition of Ag-Bi alloy from a cyanide electrolyte. Bulg Chem Commun 42:317–322Google Scholar
  8. 8.
    Hrussanova A, Krastev I (2009) Electrodeposition of silver-tin alloys from pyrophosphate-cyanide electrolytes. J Appl Electrochem 39:989–994CrossRefGoogle Scholar
  9. 9.
    Ts D, Krastev I, Zielonka A (2005) Effect of the electrolyte composition on In and Ag-In alloy electrodeposition from cyanide electrolytes. J Appl Electrochem 35:1245–1251CrossRefGoogle Scholar
  10. 10.
    Krastev I, Ts D (2010) Self-organized structure formation and phase identification in electrodeposited silver-cadmium, silver-indium and cobalt-indium alloys. J Eng Process Manag 2:99–105Google Scholar
  11. 11.
    Gabay AM, Hadjipanayis GC (2010) Phases and phase equilibria in cobalt-rich Pr-Co-In alloys for permanent magnets. J Alloys Compd 500:161–166CrossRefGoogle Scholar
  12. 12.
    Sadana YN, Keskinen AE, Guindon M (1975) Electrodeposition of alloys III Electrodeposition and X-ray structure of cobalt-indium alloys (initial studies). Electrodeposition Surf Treat 3:149–157CrossRefGoogle Scholar
  13. 13.
    Stalzer M (1964) Geräte für Spannungsmessungen an galvanisch abgeschiedenen Schichten und Beschreibung eines neuentwickelten selbstkompensierenden und registrierenden Gerätes. Metalloberfläche 263–267Google Scholar
  14. 14.
    Wingenfeld P (2004) Selective high-speed plating of noble metals in reel-to-reel plants—Part 6. Galvanotechnik 95:879–884Google Scholar
  15. 15.
    Speight JG (2005) Lange’s handbook of chemistry. McGraw-Hill, New YorkGoogle Scholar
  16. 16.
    Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad smulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318CrossRefGoogle Scholar
  17. 17.
    Maki N, Tanaka N (1975) Cobalt, chapter III. In: Bard JA (ed) Encyclopedia of electrochemisrty of the elements. Marcel Dekker Inc, New York, pp 43–210Google Scholar
  18. 18.
    Losev VV, Molodov AI (1976) Indium, chapter I. In: Bard JA (ed) Encyclopedia of electrochemisrty of the elements. Marcel Dekker Inc, New York, pp 1–32Google Scholar
  19. 19.
    Frier M, Ellis J, Aslam M (1996) Stability of radiopharmaceuticals during administration to the intensive care patient. J Clin Pharm Ther 21:149–153CrossRefGoogle Scholar
  20. 20.
    Mohammad B, Ure AM, Littlejohn D (1993) On-line preconcentration of aluminium, gallium and indium with quinolin-8-ol for determination by atomic absorption spectrometry. J Anal At Spectrom 8:325–331CrossRefGoogle Scholar
  21. 21.
    Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102CrossRefGoogle Scholar
  22. 22.
    Lacroix S (1949) E´tude de quelques complexes et compose´ speu solubles des ions Al3+, Ga3+, In3+. Ann Chim 4:5–83Google Scholar
  23. 23.
    Liakishev NP (1997) Diagrammy sostojanija dvojnyh metallicheskih sistem. Mashinostroenie, Moskva, pp 37–38Google Scholar
  24. 24.
    Krastev I, Dobrovolska T, Kowalik R, Zabinski P, Zielonka A (2009) Properties of silver-indium alloys electrodeposited from cyanide electrolytes. Electrochim Acta 54:2515–2521CrossRefGoogle Scholar
  25. 25.
    Sotirova G, Sarnev S, Armyanov S (1989) Evolution of the included hydrogen, internal stress, microharness and microstructure of electrodeposited cobalt. Electrochim Acta 34:1237–1242CrossRefGoogle Scholar
  26. 26.
    Raub CJ (1990) Jet plating. Laboratory simulation and control. Trans Inst Met Finish 68:115–117Google Scholar
  27. 27.
    De Vogelaere M, Sommer V, Springborn H, Michelsen-Mohammadein U (2001) High-speed plating for electronic applications. Electrochim Acta 47:109–116CrossRefGoogle Scholar
  28. 28.
    Qiao G, Jing T, Wang N, Gao Y, Zhao X, Zhou J, Wang W (2006) Effect of current density on microstructure and properties of bulk nanocrystalline Ni-Co alloys prepared by JED. J Electrochem Soc 153:C305–C308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • I. Krastev
    • 1
  • Ts. Dobrovolska
    • 1
  • U. Lačnjevac
    • 2
  • S. Nineva
    • 1
  1. 1.Institute of Physical ChemistryBulgarian Academy of ScienceSofiaBulgaria
  2. 2.Institute for Multidisciplinary ResearchBelgradeSerbia

Personalised recommendations