Journal of Solid State Electrochemistry

, Volume 16, Issue 10, pp 3227–3235 | Cite as

Electrochemical oxidation behavior of methotrexate at DNA/SWCNT/Nafion composite film-modified glassy carbon electrode

Original Paper


Glassy carbon electrode modified with DNA-functionalized single-walled carbon nanotube (DNA/SWCNT) and Nafion composite film was developed for the detection of methotrexate. The characteristics of the modified electrode were examined by transmission electron microscopy and cyclic voltammetry. Compared with a bare glassy carbon electrode and Nafion- and SWCNT/Nafion-modified electrodes, the DNA/SWCNT/Nafion-modified one exhibited the more superior ability of detecting methotrexate, including the higher sensitivity and the lower overpotentials, due to the synergetic DNA-functionalized SWCNT and Nafion. Also, the dependence of the current on pH, nature of buffer, instrumental parameters, accumulation time, and potential was investigated to optimize the experimental conditions in the determination of methotrexate. Under the selected conditions, the modified electrode in pH = 2.78 Britton–Robinson buffer solutions showed a linear voltammetric response to methotrexate within the concentration range of 2.0 × 10−8–1.5 × 10−6 mol L−1, with the detection limit of 8.0 × 10−9 mol L−1. The method was also applied to detect methotrexate in medicinal tablets and spiked human blood serum samples.


Methotrexate DNA/SWCNT/Nafion Electrochemical oxidation Square wave voltammetry 



The authors gratefully acknowledge the financial support of the Natural Science Foundation of Henan Province in China (No. 2008A150008, 2010B150007).


  1. 1.
    Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff JA (1948) Temporary remissions in acute leukemia in children produced by folic. N Engl J Med 238:787–793CrossRefGoogle Scholar
  2. 2.
    Levitt M, Mosher MB, DeConti RC, Farber LR, Skeel RT, Marsh JC, Mitchell MS, Papac RJ, Thomas ED, Bertino JR (1973) Improved therapeutic index of methotrexate with “leucovorin rescue”. Cancer Res 33:1729–1734Google Scholar
  3. 3.
    Frei E III, Jaffe N, Tattersall MHN, Pitman S, Parker L (1975) New approaches to cancer chemotherapy with methotrexate. N Engl J Med 292:846–851CrossRefGoogle Scholar
  4. 4.
    Sastry CSP, Rao J (1996) Spectrophotometric methods for the determination of methotrexate in pharmaceutical formulations. Anal Lett 29:1763–1778CrossRefGoogle Scholar
  5. 5.
    Chakraba SG, Bernstei IA (1969) A simplified fluorometric method for determination of plasma methotrexate. Clin Chem 15:1157–1161Google Scholar
  6. 6.
    Chen SM, Zhang ZJ, He DY, Hu YF, Zheng HZ, He C (2007) Flow-injection-electrochemical oxidation fluorimetry for determination of methotrexate. Luminescence 22:338–342CrossRefGoogle Scholar
  7. 7.
    He Y, Xue Y, Feng M, Lü J (1998) Flow injection-chemiluminescence determination of methotrexatum. Chin J Anal Chem 26:1138Google Scholar
  8. 8.
    Meras ID, Mansilla AE, Gomez MJR (2005) Determination of methotrexate, several pteridines, and creatinine in human urine, previous oxidation with potassium permanganate, using HPLC with photometric and fluorimetric serial detection. Anal Biochem 346:201–209CrossRefGoogle Scholar
  9. 9.
    El-Hady DA, El-Maali NA, Gotti R, Bertucci C, Mancini F, Andrisano V (2005) Methotrexate determination in pharmaceuticals by enantioselective HPLC. J Pharm Biomed Anal 37:919–925CrossRefGoogle Scholar
  10. 10.
    Duran Meras I, Espinosa Mansilla A, Rodriguez Gomez MJ (2005) Determination of methotrexate, several pteridines, and creatinine in human urine, previous oxidation with potassium permanganate, using HPLC with photometric and fluorimetric serial detection. Anal Biochem 346:201–209CrossRefGoogle Scholar
  11. 11.
    Rodriguez Flores J, Castaneda Penalvo G, Espinosa Mansilla A, Rodriguez Gomez MJ (2005) Capillary electrophoretic determination of methotrexate, leucovorin and folic acid in human urine. J Chromatogr B 819:141–147CrossRefGoogle Scholar
  12. 12.
    Flores JR, Nevado JJB, Meras ID, Gomez MJR (2005) Capillary electrophoretic determination of triamterene, methotrexate, and creatinine in human urine. J Sep Sci 28:658–664CrossRefGoogle Scholar
  13. 13.
    Sczesny F, Hempel G, Boos J, Blaschke G (1998) Capillary electrophoretic drug monitoring of methotrexate and leucovorin and their metabolites. J Chromatogr, B: Anal Technol Biomed Life Sci 718:177–185CrossRefGoogle Scholar
  14. 14.
    Ye BX, Qu S, Wang F, Li L (2005) The study of electrochemical characteristics of methotrexate. J Chin Chem Soc 52:1111–1116Google Scholar
  15. 15.
    Gao L, Wu YJ, Liu JX, Ye BX (2007) Anodic voltammetric behaviors of methotrexate at a glassy carbon electrode and its determination in spiked human urine. J Electroanal Chem 610:131–136CrossRefGoogle Scholar
  16. 16.
    Wang F, Wu YJ, Liu JX, Ye BX (2009) DNA Langmuir–Blodgett modified glassy carbon electrode as voltammetric sensor for determinate of methotrexate. Electrochim Acta 54:1408–1413CrossRefGoogle Scholar
  17. 17.
    Šelešovská R, Bandžuchová L, Navrátil T (2011) Voltammetric behavior of methotrexate using mercury meniscus modified silver solid amalgam electrode. Electroanalysis 23:177–187CrossRefGoogle Scholar
  18. 18.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  19. 19.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  20. 20.
    Zhao Q, Nardelli MB, Lu W, Bernholc J (2005) Carbon nanotube–metal cluster composites: a new road to chemical sensors. Nano Lett 5:847–851CrossRefGoogle Scholar
  21. 21.
    Cathcart H, Quinn S, Nicolosi V, Kelly JM, Blau WJ, Coleman JN (2007) Spontaneous debundling of single-walled carbon nanotubes in DNA-based dispersions. J Phys Chem C 111:66–74CrossRefGoogle Scholar
  22. 22.
    Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN (2006) Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett 6:159–164CrossRefGoogle Scholar
  23. 23.
    Fagan JA, Landi BJ, Mandelbaum I, Simpson JR, Bajpai V, Bauer BJ, Migler K, Walker ARH, Raffaelle R, Hobbie EK (2006) Comparative measures of single-wall carbon nanotube dispersion. J Phys Chem B 110:23801–23805CrossRefGoogle Scholar
  24. 24.
    Daniel S, Rao TP, Rao KS, Rani SU, Naidu GRK, Lee HY, Kawai T (2007) A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens Actuators B: Chem 122:672–682CrossRefGoogle Scholar
  25. 25.
    Staii C, Johnson AT (2005) DNA-decorated carbon nanotubes for chemical sensing. Nano Lett 5:1774–1778CrossRefGoogle Scholar
  26. 26.
    Ma YF, Ali SR, Dodoo AS, He HX (2006) Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J Phys Chem B 110:16359–16365CrossRefGoogle Scholar
  27. 27.
    Ali SR, Ma YF, Parajuli RR, Balogun Y, Lai WYC, He HX (2007) A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587CrossRefGoogle Scholar
  28. 28.
    Hu CG, Zhang YY, Bao G, Zhang YL, Liu ML, Wang ZL (2005) DNA functionalized single-walled carbon nanotubes for electrochemical detection. J Phys Chem B 109:20072–20076CrossRefGoogle Scholar
  29. 29.
    Xu Y, Pehrsson PE, Chen LW, Zhang R, Zhao W (2007) Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing. J Phys Chem C 111:8638–8643CrossRefGoogle Scholar
  30. 30.
    Liu YX, Wei WZ (2008) Layer-by-layer assembled DNA functionalized single-walled carbon nanotube hybrids for arsenic(III) detection. Electrochem Commun 10:872–875CrossRefGoogle Scholar
  31. 31.
    Liu YX, Lan D, Wei WZ (2009) Layer-by-layer assembled DNA-functionalized single-walled carbon nanotube hybrids-modified electrodes for 2,4,6-trinitrotoluene detection. J Electroanal Chem 637:1–5CrossRefGoogle Scholar
  32. 32.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28CrossRefGoogle Scholar
  33. 33.
    Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-[ethylenedinitrilo(tetraacetate)] on mercury electrodes. Anal Chem 36:932–934CrossRefGoogle Scholar
  34. 34.
    Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Material and Chemistry EngineeringHenan Institute of EngineeringZhengzhouPeople’s Republic of China
  2. 2.Department of ChemistryZhengzhou Normal UniversityZhengzhouPeople’s Republic of China

Personalised recommendations