Advertisement

Journal of Solid State Electrochemistry

, Volume 16, Issue 9, pp 3037–3043 | Cite as

Rubbery copolymer electrolytes containing polymerized ionic liquid for dye-sensitized solar cells

  • Won Seok Chi
  • Sung Hoon Ahn
  • Harim Jeon
  • Yong Gun Shul
  • Jong Hak KimEmail author
Original Paper

Abstract

A novel type of random copolymer comprised of a polymerized ionic liquid, poly(1-((4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), and amorphous rubbery poly(oxyethylene methacrylate) (POEM) was synthesized and employed as a solid electrolyte in an I2-free dye-sensitized solar cell (DSSC). The copolymer electrolytes deeply infiltrated into the nanopores of mesoporous TiO2 films, resulting in improved interfacial contact of electrode/electrolyte. The glass transition temperature (T g) of the PEBII–POEM (−23 °C) was lower than that of PEBII homopolymer (−4 °C), indicating greater chain flexibility in the former. However, the DSSC efficiency of PEBII–POEM (4.5 % at 100 mW/cm2) was lower than that of PEBII (5.9 %), indicating that ion concentration is more important than chain flexibility. Interestingly, upon the introduction of ionic liquid, i.e., 1-methyl-3 propylimidazolium iodide, the efficiency of PEBII remained almost constant (5.8 %), whereas that of PEBII–POEM was significantly improved up to 7.0 % due to increased I ion concentration, which is one of the highest values for I2-free DSSCs.

Keywords

Dye-sensitized solar cell (DSSC) Polymerized ionic liquid TiO2 Iodine-free Polymer electrolyte 

Notes

Acknowledgments

This work was supported by the Ministry of Knowledge Economy through the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (20104010100500) and by the New & Renewable Energy R&D program (2009T100100606). This work was also supported by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement in Technology (KIAT) through the Workforce Development Program in Strategic Technology.

References

  1. 1.
    O’Regan B, Graetzel M (1999) Nature 353:737–739CrossRefGoogle Scholar
  2. 2.
    Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S (2002) Chem Commun 2:374–375CrossRefGoogle Scholar
  3. 3.
    Zhang DW, Li XD, Chen S, Tao F, Sun Z, Yin XJ, Huang XM (2010) J Solid State Electrochem 14:1541–1546CrossRefGoogle Scholar
  4. 4.
    Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao XZ (2011) ACS Nano 5:3795–3799CrossRefGoogle Scholar
  5. 5.
    Bandara TMWJ, Dissanayake MAKL, Ileperuma OA, Varaprathan K, Vignarooban K, Mellander BE (2008) J Solid State Electrochem 12:913–917CrossRefGoogle Scholar
  6. 6.
    Yang H, Ileperuma OA, Shimomura M, Murakami K (2009) Sol Energy Mater Sol Cells 93:1083–1086CrossRefGoogle Scholar
  7. 7.
    Anandan S, Pitchumani S, Muthuraaman B, Maruthamuthu P (2006) Sol Energy Mater Sol Cells 90:1715–1720CrossRefGoogle Scholar
  8. 8.
    Ganesan S, Muthuraaman B, Mathew V, Madhavan J, Maruthamuthu P, Suthanthiraraj SA (2008) Sol Energy Mater Sol Cells 92:1718–1722CrossRefGoogle Scholar
  9. 9.
    Wang G, Wang L, Zhuo S, Fang S, Lin Y (2011) Chem Commun 47:2700–2702CrossRefGoogle Scholar
  10. 10.
    Lee CP, Chen PY, Vittala R, Ho KC (2010) J Mater Chem 20:2356–2361CrossRefGoogle Scholar
  11. 11.
    Xia JB, Masaki N, Lira-Cantu N, Kim Y, Jiang KJ, Yanagida S (2008) J Am Chem Soc 130:1258–1263CrossRefGoogle Scholar
  12. 12.
    Jiang KJ, Manseki K, Yu YH, Masaki N, Suzuki K, Song YL, Yanagida S (2009) Adv Funct Mater 19:2481–2485CrossRefGoogle Scholar
  13. 13.
    Liu X, Zhang W, Uchida S, Cai L, Liu B, Ramakrishna S (2010) Adv Mater 22:E150–E155CrossRefGoogle Scholar
  14. 14.
    Fang Y, Xiang W, Zhou X, Lin Y, Fang S (2011) Electrochem Commun 13:60–63CrossRefGoogle Scholar
  15. 15.
    Yanagida S, Yu Y, Manseki K (2009) Acc Chem Res 42:1827–1838CrossRefGoogle Scholar
  16. 16.
    Docampo P, Guldin S, Stefik M, Tiwana P, Orilall MC, Hüttner S, Sai H, Wiesner U, Steiner U, Snaith HJ (2010) Adv Funct Mater 20:1787–1796CrossRefGoogle Scholar
  17. 17.
    Crossland EJW, Nedelcu M, Ducati C, Ludwigs S, Hillmyer MA, Steiner U, Snaith HJ (2009) Nano Letters 9:2813–2819CrossRefGoogle Scholar
  18. 18.
    Koh JK, Kim JH, Kim BG, Kim JH, Kim E (2011) Adv Mater 23:1641–1646CrossRefGoogle Scholar
  19. 19.
    Chi WS, Koh JK, Ahn SH, Shin JS, Ahn HJ, Ryu DY, Kim JH (2011) Electrochem Commun 13:1349–1352Google Scholar
  20. 20.
    Ahn SH, Koh JH, Seo JA, Kim JH (2010) Chem Commun 46:1935–1937CrossRefGoogle Scholar
  21. 21.
    Ahn SH, Park JT, Koh JK, Roh DK, Kim JH (2011) Chem Commun 47:5882–5884CrossRefGoogle Scholar
  22. 22.
    Celik SU, Bozkurt A (2008) Eur Polym J 44:213–218CrossRefGoogle Scholar
  23. 23.
    Kumar A, Deka M, Banerjee S (2010) Solid State Ionics 181:609–615CrossRefGoogle Scholar
  24. 24.
    Noto VD, Vittadello M, Yoshida K, Lavina S, Negro E, Furukawa T (2011) Electrochim Acta 57:192–200CrossRefGoogle Scholar
  25. 25.
    Clément S, Tizit A, Desbief S, Mehdi A, Winter JD, Gerbaux P, Lazzaroni R, Boury B (2011) J Mater Chem 21:2733–2739CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Won Seok Chi
    • 1
  • Sung Hoon Ahn
    • 1
  • Harim Jeon
    • 1
  • Yong Gun Shul
    • 1
  • Jong Hak Kim
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations