Journal of Solid State Electrochemistry

, Volume 16, Issue 7, pp 2503–2513 | Cite as

Kinetics of passivity of NiTi in an acidic solution and the spectroscopic characterization of passive films

  • Mirjana Metikoš-HukovićEmail author
  • Jozefina Katić
  • Ingrid Milošev
Original Paper


Anodic polarization of nitinol in acetic acid under galvanostatic conditions produces oxide films composed mainly of TiO2. An exponential current-field relation is valid during ionic conduction through the growing oxide, in which the field coefficient is related to the jump distance. Transport processes in anodic films have been discussed in terms of a cooperative mechanism developed for amorphous oxide films on valve metals, in which both metal and oxygen ions were involved in ionic conduction. For more crystalline oxide structure of passive films on nitinol, formed during a prolonged potentiostatic conditions, the charge transfer takes place only through the oxygen vacancies as mobile species via a high-field-assisted mechanism. Based on the results of the Mott–Schottky analysis, these films behave as n-type semiconductors indicating that oxygen vacancies formed during the film formation and growth act as electron donors. The barrier/protecting and electronic/semiconducting properties of the passive films as well as their chemical composition were studied using electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy.


Cooperative mechanism of ionic conductivity Diffusivity of anion vacancies Titanium Nickel Oxide films Passivity X-ray photoelectron spectroscopy (XPS) Electrochemical impedance spectroscopy (EIS) 

List of symbols


Half-barrier width (jump distance) of energy barrier (nm)


Kinetic parameter (A cm−2)


Field coefficient (cm V−1)


Capacitance (F cm−2)


Constant-phase element


Double layer capacitance (F cm−2)


“Space charge” capacitance (F cm−2)


Oxide layer thickness (nm)


Diffusion coefficient of oxygen vacancies (cm2 s−1)


Electron charge (1.602 × 10−19 C)


Potential (V)


Binding energy (eV)


Film formation potential (V)


Flat band potential (V)


Open circuit potential (V)


Frequency (Hz)


Faraday constant (96,500 C mol−1)


Mean electric field strength (V cm−1)


Intensity (a.u.)


Current density (A cm−2)


Passive current density (A cm−2)


Steady-state flux of oxygen vacancies (s−1 cm−2)

Complex variable for sinusoidal perturbations with ω = 2πf


Boltzmann constant (1.38 × 10−23 J K−1)


CPE power


Donor density (cm−3)


Molar mass (g mol−1)


Specific volume of formed oxide per coulomb (cm3 C−1)


Outer radius of conductive gap (radium of cluster) (cm)

\( \Re \)

Universal gas constant (8.314 J K−1 mol−1)


Ohmic resistance (Ω cm2)


Resistance of the oxide layer (Ω cm2)


Unitary formation rate of the film formation (F−1 cm2)


Electrode surface (cm2)


Constant of the CPE element (Ω−1 cm−2 s n )


Temperature (K)


Metal transport number


Passivation time (h)

\( V_{\text{O}}^{{{2 + }}} \)

Oxygen vacancies (Kroger–Vink notation)


Experimental parameter (cm−3)


Number of electrons interchanged


The charge number of oxygen ions


Electrode impedance (Ω cm2)


Imaginary part of impedance (Ω cm2)


Constant related to overlap of cluster before and after vacancy jump


Stoichiometric parameter for MO χ/2 passive film


Scofield photoionization cross section


Charge on the cation ejected from the passive film


Dielectric constant of the surface film


Dielectric constant of vacuum (8.85 × 10−14 F cm−1)


Inelastic mean free electron path (nm)


Scan rate (mV s−1)


Surface roughness factor


Density (g cm−3)


Angular frequency (Hz)


  1. 1.
    Shabalovskaya SA (2002) Bio-Med Mater Eng 12:69–109Google Scholar
  2. 2.
    Firstov GS, Vitchev RG, Kumar H, Blanpain B, Humbeeck JV (2002) Biomaterials 23:4863–4871CrossRefGoogle Scholar
  3. 3.
    Morgan NB (2004) Mater Sci Eng A 378:16–23CrossRefGoogle Scholar
  4. 4.
    Shabalovskaya SA, Anderegg J, van Humbeeck J (2008) Acta Biomater 4:447–467CrossRefGoogle Scholar
  5. 5.
    Chan CM, Trigwell S, Duerig T (1990) Surf Inter Anal 15:349–354CrossRefGoogle Scholar
  6. 6.
    Granchi D, Ciapetti G, Savarino L, Stea S, Filippini F, Sudanese A, Rotini R, Giunti A (2000) Biomaterials 21:2059–2065CrossRefGoogle Scholar
  7. 7.
    Heintz C, Riepe G, Birken L, Kaiser E, Chakfe N, Morlock M, Delling G, Imig H (2001) J Endovasc Ther 8:248–253CrossRefGoogle Scholar
  8. 8.
    Liu X, Chu PK, Ding C (2004) Mater Sci Eng R47:49–121Google Scholar
  9. 9.
    Petrović Ž, Katić J, Metikoš-Huković M, Dadafarin H, Omanovic S (2011) J Electrochem Soc 158:159–165CrossRefGoogle Scholar
  10. 10.
    Wever DJ, Veldhuizen AG, de Vriews J, Busscher HJ, Uges DRA, van Horn JR (1998) Biomaterials 19:761–769CrossRefGoogle Scholar
  11. 11.
    Cheng FT, Shi P, Pang GKH, Wong MH, Man HC (2007) J Alloys Compd 438:238–242CrossRefGoogle Scholar
  12. 12.
    Shi P, Cheng FT, Man HC (2007) Mater Lett 61:2385–2388CrossRefGoogle Scholar
  13. 13.
    Chu CL, Wang RM, Hu T, Yin LH, Pu YP, Lin PH, Dong YS, Guo C, Chung CY, Yeung KWK, Chu PK (2009) J Mater Sci: Mater Med 20:223–228CrossRefGoogle Scholar
  14. 14.
    Kawakita J, Stratmann M, Hassel AW (2007) J Electrochem Soc 154:C294–298CrossRefGoogle Scholar
  15. 15.
    Young L (1961) Anodic oxide films. Academic, LondonGoogle Scholar
  16. 16.
    Pringle JPS (1980) Electrochim Acta 25:1423–1437CrossRefGoogle Scholar
  17. 17.
    Fromhold AT Jr (1976) In: Diggle JW, Vijh AK (eds) Oxides and oxide films, vol 3. Marcel Dekker, New York, pp 1–271Google Scholar
  18. 18.
    Lohrengel MM (1993) Mater Sci Eng R11:243–294Google Scholar
  19. 19.
    Pringle JPS (1973) J Electrochem Soc 120:398–407CrossRefGoogle Scholar
  20. 20.
    Khalil N, Leach JSL (1986) Electrochim Acta 31:1279–1285CrossRefGoogle Scholar
  21. 21.
    Pyun SI, Hong MH (1992) Electrochim Acta 37:327–332CrossRefGoogle Scholar
  22. 22.
    Chao CY, Lin LF, Macdonald DD (1981) J Electrochem Soc 128:1187–1194CrossRefGoogle Scholar
  23. 23.
    Macdonald DD (1992) J Electrochem Soc 139:3434–3449CrossRefGoogle Scholar
  24. 24.
    Wang MH, Hebert KR (1999) J Electrochem Soc 146:3741–3749CrossRefGoogle Scholar
  25. 25.
    Macdonald DD, Urquidi-Macdonald M (1990) J Electrochem Soc 137:2395–2402CrossRefGoogle Scholar
  26. 26.
    Friis EP, Anderson JET, Madsen LL, Bonander N, Moller P, Ulstrup J (1998) Electrochim Acta 43:1114–1122CrossRefGoogle Scholar
  27. 27.
    Sanz JM, Hofmann S (1983) Surf Inter Anal 5:210–216CrossRefGoogle Scholar
  28. 28.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) In: Chastain J, King RC Jr (eds) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Eden PrairieGoogle Scholar
  29. 29.
    Wolff M (1992) Thesis, Heinrich-Heine Universität, DüsseldorfGoogle Scholar
  30. 30.
    Milošev I, Metikoš-Huković M, Strehblow HH (2000) Biomaterials 21:2103–2113CrossRefGoogle Scholar
  31. 31.
    Milošev I, Strehblow HH (2000) J Biomed Mater Res 52:404–412CrossRefGoogle Scholar
  32. 32.
    Kim KS, Winograd N (1974) Surface Sci 43:635–643CrossRefGoogle Scholar
  33. 33.
    Seah MP, Dench WA (1979) Surf Inter Anal 1:2–11CrossRefGoogle Scholar
  34. 34.
    Scofield JH (1976) J Electr Spectr Relat Phenom 8:129–137CrossRefGoogle Scholar
  35. 35.
    Reilman RF, Msezane A, Manson ST (1976) J Electr Spectr Relat Phenom 8:389–394CrossRefGoogle Scholar
  36. 36.
    Memry (2011) Bethel, Connecticut. Accessed 21 Mar 2011
  37. 37.
    Bunshah B, Gupta BK (eds) (1991) Handbook of tribology. McGraw-Hill, New York, p D-42Google Scholar
  38. 38.
    Metikoš-Huković M, Kwokal A, Piljac J (2003) Biomaterials 24:3765–3775CrossRefGoogle Scholar
  39. 39.
    Ries LAS, Da Cunha BM, Ferreira MGS, Muller IL (2008) Corr Sci 50:676–686CrossRefGoogle Scholar
  40. 40.
    Omanović S, Metikoš-Huković M (1995) Solid State Ionics 78:69–78CrossRefGoogle Scholar
  41. 41.
    Ammar IA, Kamal I (1971) Electrochim Acta 16:1539–1553CrossRefGoogle Scholar
  42. 42.
    Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) Med Eng Phys 23:329–346CrossRefGoogle Scholar
  43. 43.
    Nicic I, Macdonald DD (2008) J Nucl Mater 379:54–58CrossRefGoogle Scholar
  44. 44.
    Vasquez G, Gonzales I (2007) Electrochim Acta 52:6771–6777CrossRefGoogle Scholar
  45. 45.
    Bojinov M (1997) Electrochim Acta 42:3489–3498CrossRefGoogle Scholar
  46. 46.
    Sikora E, Sikora J, Macdonald DD (1996) Electrochim Acta 41:783–789CrossRefGoogle Scholar
  47. 47.
    Ahn SJ, Kwon HS (2005) J Electroanal Chem 579:311–319CrossRefGoogle Scholar
  48. 48.
    Figueira N, Silva TM, Carmezim MJ, Fernandes JCS (2009) Electrochim Acta 54:921–926CrossRefGoogle Scholar
  49. 49.
    Shabalovskaya SA, Tian H, Anderegg JW, Schryvers DU, Carroll WU, Van Humbeeck J (2009) Biomaterials 30:468–477CrossRefGoogle Scholar
  50. 50.
    Milošev I, Kapun B (2011a) Mat Sci Eng C. doi: 10:1016/j.msec.2011.11.007
  51. 51.
    Milošev I, Kapun B (2011b) Mat Sci Eng C. doi: 10:1016/j.msec.2011.08.022
  52. 52.
    Hoppe HW, Strehblow HH (1990) Surf Inter Anal 16:271–277CrossRefGoogle Scholar
  53. 53.
    Boukamp A (1986) Solid State Ionics 20:31–44CrossRefGoogle Scholar
  54. 54.
    Jorcin JB, Orazem ME, Pebere N, Tribollet B (2006) Electrochim Acta 51:1473–1479CrossRefGoogle Scholar
  55. 55.
    Brug GJ, van der Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) J Electroanal Chem 176:275–295CrossRefGoogle Scholar
  56. 56.
    Marsh J, Gorse G (1998) Electrochim Acta 43:659–670CrossRefGoogle Scholar
  57. 57.
    Dean MH, Stimming U (1987) J Electroanal Chem 228:135–151CrossRefGoogle Scholar
  58. 58.
    Gunnarsson M, Abbas Z, Ahlberg E, Gobom S, Nordholm S (2002) J Colloid Interface Sci 249:52–61CrossRefGoogle Scholar
  59. 59.
    Petersson IU, Löberg JEL, Fredriksson AS, Ahlberg EK (2009) Biomaterials 30:4471–4479CrossRefGoogle Scholar
  60. 60.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York, p 133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Mirjana Metikoš-Huković
    • 1
    Email author
  • Jozefina Katić
    • 1
  • Ingrid Milošev
    • 2
  1. 1.Department of Electrochemistry, Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Department of Physical and Organic ChemistryJožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations