Journal of Solid State Electrochemistry

, Volume 16, Issue 6, pp 2197–2201 | Cite as

α-MoO3 nanowire-based amperometric biosensor for l-lactate detection

  • Imran Shakir
  • Muhammad Shahid
  • Hyoung Woo Yang
  • Serhiy Cherevko
  • Chan-Hwa Chung
  • Dae Joon Kang
Original Paper


Large-scale orthorhombic single-crystalline molybdenum trioxide nanowires were synthesized using a facile one-pot hydrothermal method. Lactate oxidase enzyme was immobilized on the nanowires to produce a highly sensitive electrochemical biosensor for l-lactate detection. At an applied potential of 0.5 V, the sensor exhibited a high sensitivity of 0.87 μA/mM with a fast response to l-lactate (90% of response times within 10 s). A linear response was obtained over a concentration range from 0.5 to 8 mM with a detection limit of 0.15 mM (S/N = 3). The developed biosensor showed excellent reproducibility and operational stability, as well as the ability to be stored long term.


Biosensor l-lactate MoO3 nanowires Direct electron transfer 



This work was supported by the Korean Ministry of Education, Science and Technology under grants NRF-2011-0031392 (Priority Research Centers Program), R31-2008-000-10029-0 (World Class University Program), and S-2011-0292-000 (Basic Science Research Program) and by the Global Frontier Research Center for Advanced Soft Electronics.


  1. 1.
    Palmisano F, Benedettob GE, Zamboninb CG (1997) Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Anal 122:365–369CrossRefGoogle Scholar
  2. 2.
    Ciobanu M, Taylor DE, Wilburn JP, Cliffel DE (2008) Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal Chem 80:2717–2727CrossRefGoogle Scholar
  3. 3.
    Bassi AS, Tang DQ, Lee E, Zhu JX, Bergougnou MA (1996) Biosensors in environmental and bioprocess monitoring and control. Food Tech Biotechnol 34:9–22Google Scholar
  4. 4.
    Carr PW, Bowers LD (1976) Applications of immobilized enzymes in analytical chemistry. Anal Chem 48:544A–549ACrossRefGoogle Scholar
  5. 5.
    Hall EAH (1991) Biosensors. Prentice Hall, LondonGoogle Scholar
  6. 6.
    Cui X, Li MC, Zanga J, Yu S (2007) Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens Bioelectro 22:3288–3292CrossRefGoogle Scholar
  7. 7.
    Cowan BN, Burns HJG, Boyle P, Ledingham IM (1984) The relative prognostic value of lactate and haemodynamic measurements in early shock. Anaesthesia 39:750–755CrossRefGoogle Scholar
  8. 8.
    Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectro 26:2811–2821CrossRefGoogle Scholar
  9. 9.
    Parra-Alfambra AM, Casero E, Petit-Domínguez MD, Barbadillo M, Pariente F, Vázquez L, Lorenzo E (2011) New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Anal 136:340–347CrossRefGoogle Scholar
  10. 10.
    Shkotova LV, Goriushkina TB, Tran-Minh C, Chovelon JM, Soldatkin AP, Dzyadevych SV (2008) Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater Sci Eng C 28:943–948CrossRefGoogle Scholar
  11. 11.
    Leonida MD, Starczynowski DT, Waldman R, Blajeni BA (2003) Polymeric FAD used as enzyme-friendly mediator in lactate detection. Anal Bioanal Chem 376:832–837CrossRefGoogle Scholar
  12. 12.
    Cannon JJ, Chen LF, Flickinger MC, Tsao GT (1984) The development of an immobilized lactate oxidase system for lactic acid analysis. Biotechnol Bioeng 26:167–173CrossRefGoogle Scholar
  13. 13.
    Rawson FJ, Purcell WM, Xu J, Pemberton RM, Fielden PR, Biddle N, Hart JP (2009) A microband lactate biosensor fabricated using a water-based screen-printed carbon ink. Talanta 77:1149–1154CrossRefGoogle Scholar
  14. 14.
    Parra A, Casero E, Lorenzo E, Pariente F, Vazquez L (2007) Nanomechanical properties of globular proteins: lactate oxidase. Langmuir 23:2747–2754CrossRefGoogle Scholar
  15. 15.
    Lee TY, Shim YB (2001) Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer. Anal Chem 73:5629–5632CrossRefGoogle Scholar
  16. 16.
    Lupu A, Valsesia A, Bretagnol F, Colpo P, Rossi F (2007) Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sens Actuators B 127:606–612CrossRefGoogle Scholar
  17. 17.
    Curulli A, Cusmà A, Kaciulis S, Padeletti G, Pandolfi L, Valentini F, Viticoli M (2006) Immobilization of GOD and HRP enzymes on nanostructured substrates. Surf Interface Anal 38:478–481CrossRefGoogle Scholar
  18. 18.
    Mai L, Hu B, Chen W, Qi Y, Lao C, Yang R, Dai Y, Wang ZL (2007) Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 19:3712–3716CrossRefGoogle Scholar
  19. 19.
    Hu B, Mai L, Chen W, Yang F (2009) From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. ACS Nano 3:478–482CrossRefGoogle Scholar
  20. 20.
    Gerard M, Ramanathan K, Chaubey A, Malhotra BD (1999) Immobilization of lactate dehydrogenase on electrochemically prepared polyaniline films. Electroanalysis 11:450–452CrossRefGoogle Scholar
  21. 21.
    Urban G, Jobst G, Aschauer E, Tilado O, Svasek P, Varahram M (1994) Performance of integrated glucose and lactate thin-film microbiosensors for clinical analysers. Sens Actuators B 19:592–596CrossRefGoogle Scholar
  22. 22.
    Ghisla S, Massey V, Choongs YS (1979) Covalent adducts of lactate oxidase. Photochemical formation and structure identification. J Biol Chem 254:10662–10669Google Scholar
  23. 23.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectro 25:901–905CrossRefGoogle Scholar
  24. 24.
    Murray RW (1984) Polymer modification of electrodes. Ann Rev Mater Sci 14:145–169CrossRefGoogle Scholar
  25. 25.
    Xiao Y, Patolsky F, Katz HJF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881CrossRefGoogle Scholar
  26. 26.
    Kong T, Chen Y, Ye Y, Zhang K, Wang Z, Wang X (2009) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes. Sens Actuators B: Chem 138:344–350CrossRefGoogle Scholar
  27. 27.
    Fang B, Zhang C, Wang G, Wang M, Ji Y (2011) A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres. Sens Actuators B: Chem 155:304–310CrossRefGoogle Scholar
  28. 28.
    Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106-1Google Scholar
  29. 29.
    Yang M, Wang J, Li H, Zheng JG, Wu NN (2008) A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 19:075502–075506CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Imran Shakir
    • 1
  • Muhammad Shahid
    • 1
  • Hyoung Woo Yang
    • 1
  • Serhiy Cherevko
    • 2
  • Chan-Hwa Chung
    • 2
  • Dae Joon Kang
    • 1
  1. 1.BK 21 Physics Research Division, Department of Energy Science, Institute of Basic ScienceSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.Advanced Materials and Process Research Center for IT, School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations