Journal of Solid State Electrochemistry

, Volume 16, Issue 6, pp 2071–2077 | Cite as

Performance of cathode-supported SOFC with Ni0.5Cu0.5–CGO anode operated in humidified hydrogen and in low-concentration dry methane

Original Paper


A Ni0.5Cu0.5–CGO (Ce0.8Gd0.2O1.9) anode in a LSM ((La0.75Sr0.25)0.95MnO3−δ )–CGO cathode-supported SOFC is tested in humidified H2 (3% H2O) and in low concentration of dry methane, respectively. After co-sintering at 1,300 °C, it was found that the A-site-deficient LSM effectively hindered the formation of La2Zr2O7 or SrZrO3. The OCVs of the cell are as high as 1.132, 1.14, and 1.147 V in humidified H2 and 1.314, 1.269, and 1.2 V in 14.8% of dry methane at 850, 800 and 750 °C, respectively, indicating that the ScSZ electrolyte film prepared by the present method is dense enough. The corresponding peak power densities are 0.396, 0.287, and 0.19 W cm−2 in humidified H2 and 0.249, 0.164, and 0.096 W cm−2 in 14.8% of dry methane at 850, 800, and 750 °C, respectively. The prepared cathode-supported SOFC with NiCu–CGO bimetallic anode shows long-term stability when dry methane is used as fuel.


Solid oxide fuel cell Cathode-supported Bimetallic anode Methane 



This study was supported by JSPS Grant-in-Aid for Scientific Research (11014675) and by the State Scholarship Fund of China Scholarship Council (2008).


  1. 1.
    Zhao C, Liu R, Wang S (2009) Electrochem Commun 11:842–845CrossRefGoogle Scholar
  2. 2.
    Yoon S, Kim Y, Kim SY, Bae J (2010) J Solid State Electrochem 14:1793–1800CrossRefGoogle Scholar
  3. 3.
    Li SL, Wang SR, Nie HW, Wen T-L (2006) J Solid State Electrochem 11:59–64CrossRefGoogle Scholar
  4. 4.
    Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs JM (2004) Nat Mater 3:17–27CrossRefGoogle Scholar
  5. 5.
    Lussier A, Sofie S, Dvorak J, Idzerd YU (2008) Int J Hydrogen Energy 33:3945–3951CrossRefGoogle Scholar
  6. 6.
    Ettler M, Blab G, Menzler NH (2007) Fuel Cells 5:349–355CrossRefGoogle Scholar
  7. 7.
    Tsipis EV, Kharton VV (2011) J Solid State Electrochem 15:1007–1040CrossRefGoogle Scholar
  8. 8.
    Lu C, Worrell WL, Vohs JM, Gorte RJ (2003) J Electrochem Soc 150:A1357–A1359CrossRefGoogle Scholar
  9. 9.
    Gorte RJ, Park S, Vohs JM, Wang CH (2000) Adv Mater 12:1465–1469CrossRefGoogle Scholar
  10. 10.
    Raza MA, Rahman IZ, Beloshapkin S (2009) J Alloys Compd 485:593–597CrossRefGoogle Scholar
  11. 11.
    Tao SW, Irvine JTS (2004) Chem Rec 4:83–95CrossRefGoogle Scholar
  12. 12.
    Ye XF, Wang SR, Wang ZR, Xiong L, Sun XF, Wen TL (2008) J Power Sources 177:419–425CrossRefGoogle Scholar
  13. 13.
    Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) J Electrochem Soc 149:A247–A250CrossRefGoogle Scholar
  14. 14.
    Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò AS, La Rosa D, Gullo LR, Antonucci V (2007) J Power Sources 164:300–305CrossRefGoogle Scholar
  15. 15.
    Kendall K, Finnerty CM, Saunders G, Chung JT (2002) J Power Sources 106:323–327CrossRefGoogle Scholar
  16. 16.
    Tucker MC (2010) J Power Sources 195:4570–4582CrossRefGoogle Scholar
  17. 17.
    Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricò AS, Gullo LR, La Rosa D, Antonucci VJ (2005) J Power Sources 145:68–73CrossRefGoogle Scholar
  18. 18.
    Ippommatsu M, Sasaki H, Otoshi S (1996) Int J Hydrogen Energy 21:129–135CrossRefGoogle Scholar
  19. 19.
    Chervin C, Glass RS, Kauzlarich SM (2005) Solid State Ionics 176:17–23CrossRefGoogle Scholar
  20. 20.
    Jiang SP (2008) J Mater Sci 43:6799–6833CrossRefGoogle Scholar
  21. 21.
    Xie Z, Xia CR, Zhang MY, Zhu W, Wang HT (2006) J Power Sources 161:1056–1061CrossRefGoogle Scholar
  22. 22.
    Chen G, You HX, Kasai Y, Sato H, Abudula A (2011) J Alloys Compd 509:5159–5162CrossRefGoogle Scholar
  23. 23.
    McIntosh S, Vohs JM, Gorte RJ (2003) Electrochem Solid State Lett 6:A240–A243CrossRefGoogle Scholar
  24. 24.
    Zhao CH, Liu R, Wang SR, Wang ZR, Qian JQ, Wen TL (2009) J Power Sources 192:552–555CrossRefGoogle Scholar
  25. 25.
    Zhang X, Ohara S, Chen H, Fukui T (2002) Fuel 81:989–996CrossRefGoogle Scholar
  26. 26.
    Chen XJ, Liu QL, Chan SH, Brandon NP, Khor KA (2007) Electrochem Commun 9:767–772CrossRefGoogle Scholar
  27. 27.
    You HX, Gao HJ, Chen G, Abudula A, Ding XW (2011) J Power Sources 196:2779–2784CrossRefGoogle Scholar
  28. 28.
    Hecht ES, Gupta GK, Zhu HY, Dean AM, Kee RJ, Maier L, Deutschmann O (2005) Appl Catal A Gen 295:40–51CrossRefGoogle Scholar
  29. 29.
    Haering C, Roosen A, Schichl H, Schnfller M (2005) Solid State Ionics 176:261–268CrossRefGoogle Scholar
  30. 30.
    Wang JX, Tao YK, Shao J, Wang WG (2009) J Power Sources 186:344–348CrossRefGoogle Scholar
  31. 31.
    Zhu WZ, Deevi SC (2003) Mater Sci Eng A362:228–239Google Scholar
  32. 32.
    Yamaguchi T, Shimizu S, Suzuki T, Fujishiro Y, Awanoa M (2008) J Electrochem Soc 155:B423–B426CrossRefGoogle Scholar
  33. 33.
    Yamahara K, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:451–456CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
  2. 2.North Japan Research Institute for Sustainable Energy (NJRISE)Hirosaki UniversityAomoriJapan
  3. 3.Aomori Prefectural Industrial Technology Research CenterIndustrial Research InstituteAomoriJapan
  4. 4.Chemical Engineering CollegeDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations