Journal of Solid State Electrochemistry

, Volume 16, Issue 5, pp 1775–1780 | Cite as

Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays

  • Gengzhi Sun
  • Jinyuan Zhou
  • Feng Yu
  • Yani Zhang
  • John Hock Lye Pang
  • Lianxi Zheng
Original Paper

Abstract

Due to their lightweight, large surface area; excellent electrical conductivity; and mechanical strength, carbon nanotube (CNT) fibers show great potentials in serving as both electrode materials and current collectors in supercapacitors. In this paper, the capacitive properties of both as-spun CNT fibers and electrochemically activated CNT fibers have been investigated using cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the as-spun CNT fibers exhibit a very low specific capacitance of 2.6 F g−1, but electrochemically activated CNT fibers show considerably improved specific capacitance. The electrochemical activation has been realized by cyclic scanning in a wide potential window. Different electrolytes have also been examined to validate the applicability of our carbon materials and the activation mechanism. It is believed that such an activation process can significantly improve the surface wetting of the CNT fibers by electrolyte (aqueous Na2SO4 solution). The cycling stability and rate-dependence of the capacitance have been studied, and the results suggest practical applications of CNT fibers in electrochemical supercapacitors.

Keywords

Supercapacitor Carbon Nanotube CNT fiber Electrochemical activation 

References

  1. 1.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  2. 2.
    Frackowiak E (2007) Phys Chem Chem Phys 9:1774–1785CrossRefGoogle Scholar
  3. 3.
    Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  4. 4.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994CrossRefGoogle Scholar
  5. 5.
    Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Appl Phys Lett 77:2421–2423CrossRefGoogle Scholar
  6. 6.
    An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC, Bae DJ, Lim SC, Lee YH (2001) Adv Mater 13:497–500CrossRefGoogle Scholar
  7. 7.
    Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Nano Lett 9:1872–1876CrossRefGoogle Scholar
  8. 8.
    Fang WC, Chyan O, Sun CL, Wu CT, Chen CP, Chen KH, Chen LC, Huang JH (2007) Electrochem Commun 9:239–244CrossRefGoogle Scholar
  9. 9.
    Dalton AB, Collins S, Munoz E, Razal JM, Ebron VH, Ferraris JP, Coleman JN, Kim BG, Baughman RH (2003) Nature 423:703CrossRefGoogle Scholar
  10. 10.
    Zhang M, Atkinson KR, Baughman RH (2004) Science 306:1358–1361CrossRefGoogle Scholar
  11. 11.
    Li YL, Kinloch IA, Windle AH (2004) Science 304:276–278CrossRefGoogle Scholar
  12. 12.
    Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle AH (2007) Science 318:1892–1895CrossRefGoogle Scholar
  13. 13.
    Zhang XF, Li QW, Tu Y, Li Y, Coulter Y, Zheng LX, Zhao YH, Jia QX, Peterson DE, Zhu YT (2007) Small 3:244–248CrossRefGoogle Scholar
  14. 14.
    Li QW, Zhang XF, DePaula R, Zheng LX, Zhao YH, Stan L, Arendt PN, Peterson DE, Zhu YT (2006) Adv Mater 18:3160–3163CrossRefGoogle Scholar
  15. 15.
    Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, Clapp TG, DePaula RF, Liao XZ, Zhao YH, Zheng LX, Peterson DE, Zhu YT (2007) Adv Mater 19:4198–4201CrossRefGoogle Scholar
  16. 16.
    Zheng LX, Sun GZ, Zhan ZY (2009) Small 6:132–137CrossRefGoogle Scholar
  17. 17.
    Jia JJ, Zhao JN, Xu G, Di JT, Yong ZZ, Tao YY, Fang C, Zhang ZG, Zhang XH, Zheng LX, Li QW (2011) Carbon 49:1333–1339CrossRefGoogle Scholar
  18. 18.
    Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT (2007) Adv Mater 19:3358–3363CrossRefGoogle Scholar
  19. 19.
    Viry L, Mercader C, Miaudet P, Zakri C, Derre A, Kuhn A, Maugey M, Poulin P (2010) J Mater Chem 20:3487–3495CrossRefGoogle Scholar
  20. 20.
    Mirfakhrai T, Oh JY, Kozlov M, Fang SL, Zhang M, Baughman RH, Madden JDW (2009) J Electrochem Soc 156:K97–K103CrossRefGoogle Scholar
  21. 21.
    Kozlov ME, Capps RC, Sampson WM, Ebron VH, Ferraris JP, Baughman RH (2005) Adv Mater 17:614–617CrossRefGoogle Scholar
  22. 22.
    Sun GZ, Huang YX, Zheng LX, Zhan ZY, Zhang YN, Pang JHL, Wu T, Chen P (2011) Nanoscale 11:4854–4858Google Scholar
  23. 23.
    Zhan ZY, Zhang YN, Sun GZ, Zheng LX, Liao K (2011) Appl Surf Sci 257:7704–7708CrossRefGoogle Scholar
  24. 24.
    Merino C, Soto P, Vilaplana-Ortego E, de Salazar JMG, Pico F, Rojo JM (2005) Carbon 43:551–557CrossRefGoogle Scholar
  25. 25.
    Sun GZ, Liu SW, Hua KF, Lv XY, Huang L, Wang YJ (2007) Electrochem Commun 9:2436–2440CrossRefGoogle Scholar
  26. 26.
    Zheng LX, Zhang XF, Li QW, Chikkannanavar SB, Li Y, Zhao YH, Liao XZ, Jia QX, Doorn SK, Peterson DE, Zhu YT (2007) Adv Mater 19:2567–2570CrossRefGoogle Scholar
  27. 27.
    Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) J Mater Chem 20:743–748CrossRefGoogle Scholar
  28. 28.
    Zhou YK, He BL, Zhang FB, Li HL (2004) J Solid State Electrochem 8:482–487CrossRefGoogle Scholar
  29. 29.
    Demarconnay L, Raymundo-Pinero E, Beguin F (2010) Electrochem Commun 12:1275–1278CrossRefGoogle Scholar
  30. 30.
    Bichat MP, Raymundo-Pinero E, Beguin F (2010) Carbon 48:4351–4361CrossRefGoogle Scholar
  31. 31.
    Alcantara R, Jimenez-Mateos JM, Lavela P, Tirado JL (2001) Electrochem Commun 3:639–642CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gengzhi Sun
    • 1
  • Jinyuan Zhou
    • 1
  • Feng Yu
    • 1
  • Yani Zhang
    • 1
  • John Hock Lye Pang
    • 1
  • Lianxi Zheng
    • 1
  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations