Journal of Solid State Electrochemistry

, Volume 16, Issue 5, pp 1743–1751 | Cite as

Enabling the Li-ion conductivity of Li-metal fluorosulphates by ionic liquid grafting

  • Prabeer Barpanda
  • Rémi Dedryvère
  • Michael Deschamps
  • Charles Delacourt
  • Marine Reynaud
  • Atsuo Yamada
  • Jean-Marie Tarascon
Original Paper

Abstract

Recently unveiled ‘alkali metal fluorosulphate (AMSO4F)’ class of compounds offers promising electrochemical and transport properties. Registering conductivity value as high as 10−7 S cm−1 in NaMSO4F phases, we explored the fluorosulphate group to design novel compounds with high Li-ion conductivity suitable for solid electrolyte applications. In the process, we produced sillimanite-structured LiZnSO4F by low temperature synthesis (T ≤ 300 °C). Examining this phase, we accidentally discovered the possibility of improving the ionic conductivity of poor conductors by forming a monolayer of ionic liquid at their particle surface. This phenomenon was studied by solid-state NMR, XPS and AC impedance spectroscopy techniques. Further, similar trends were noticed in other fluorosulphate materials like tavorite LiCoSO4F and triplite LiMnSO4F. With this study, we propose ‘ionic liquid grafting’ as an interfacial route to enable good Li-ion conductivity in otherwise poor conducting ceramics.

Keywords

Conductivity Fluorosulphates Ionic liquid grafting Solid electrolyte 

References

  1. 1.
    Mizushima K, Jones PC, Wiseman PC, Goodenough JB (1980) Mater Res Bull 15:783–789CrossRefGoogle Scholar
  2. 2.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  3. 3.
    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochem Commun 7:156–160CrossRefGoogle Scholar
  4. 4.
    Yamada A, Iwane N, Harada Y, Nishimura S, Koyama Y, Tanaka I (2010) Adv Mater 22:3583–3587CrossRefGoogle Scholar
  5. 5.
    Ramesh TN, Lee KT, Ellis BL, Nazar LF (2010) Electrochem Solid-State Lett 13:A43–A47CrossRefGoogle Scholar
  6. 6.
    Nishimura S, Nakamura M, Natsui R, Yamada A (2010) J Am Chem Soc 132:13596–13597CrossRefGoogle Scholar
  7. 7.
    Recham N, Chotard JN, Dupont L, Delacourt C, Walker W, Armand M, Tarascon JM (2010) Nat Mater 9:68–74CrossRefGoogle Scholar
  8. 8.
    Barpanda P, Recham N, Chotard JN, Djellab K, Armand M, Tarascon JM (2010) J Mater Chem 20:1659–1668CrossRefGoogle Scholar
  9. 9.
    Barpanda P, Chotard JN, Recham N, Delacourt C, Ati M, Dupont L, Armand M, Tarascon JM (2010) Inorg Chem 49:7401–7413CrossRefGoogle Scholar
  10. 10.
    Sorokin NI, Sobolev BP (2007) Crystallogr Rep 52:842–863CrossRefGoogle Scholar
  11. 11.
    Barpanda P, Chotard JN, Delacourt C, Reynaud M, Filinchuk Y, Armand M, Deschamps M, Tarascon JM (2011) Angew Chem Int Ed 50:2526–2531CrossRefGoogle Scholar
  12. 12.
    Armand M, Gauthier M, Magnan JF, Ravet N (2004) US Patent 033:360Google Scholar
  13. 13.
    Rodriguez-Carvajal J (2001) CPD Newslett 26:12–19Google Scholar
  14. 14.
    Momma K, Izumi F (2008) J Appl Crystallogr 41:653–658CrossRefGoogle Scholar
  15. 15.
    Bielecki A, Burum DP (1995) J Magn Reson A 116:215–220CrossRefGoogle Scholar
  16. 16.
    Barpanda P, Ati M, Melot B, Rousse G, Chotard JN, Doublet ML, Sougrati MT, Corr S, Jumas JC, Tarascon JM (2011) Nat Mater 10:772–779CrossRefGoogle Scholar
  17. 17.
    Kang B, Ceder G (2009) Nature 458:190–193CrossRefGoogle Scholar
  18. 18.
    Sata N, Eberman K, Ebert K, Maier J (2000) Nature 408:946–949CrossRefGoogle Scholar
  19. 19.
    Schaefer JL, Moganty SS, Archer LA (2011) J Mater Chem 21:10094–10101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Prabeer Barpanda
    • 1
    • 2
  • Rémi Dedryvère
    • 3
  • Michael Deschamps
    • 4
  • Charles Delacourt
    • 1
  • Marine Reynaud
    • 1
  • Atsuo Yamada
    • 2
  • Jean-Marie Tarascon
    • 1
    • 5
  1. 1.Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 6007Université de Picardie Jules VerneAmiens CedexFrance
  2. 2.Department of Chemical System EngineeringThe University of TokyoTokyoJapan
  3. 3.IPREM-ECP, University of PauPauFrance
  4. 4.Cenre de Recherches sur les Materiaux a Hautes Temperatures, CNRS UPR 3079Orléans CedexFrance
  5. 5.Collège de FranceParisFrance

Personalised recommendations