Journal of Solid State Electrochemistry

, Volume 16, Issue 5, pp 1953–1963

Chemically functionalized glassy carbon spheres: a new covalent bulk modified composite electrode for the simultaneous determination of lead and cadmium

  • Gunigollahalli Kempegowda Raghu
  • Srinivasan Sampath
  • Malingappa Pandurangappa
Original Paper


A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1–10 μM with a detection limit of 0.18 and 0.20 μM for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.


Glassy carbon spheres 2-Hydroxybenzoic acid diazonium tetrafluroborate Covalent modification Stripping voltammetry Lead and cadmium 


  1. 1.
    Cesarino I, Cavaltheiro EJ, Brett CMA (2010) Electroanalysis 22:61–68CrossRefGoogle Scholar
  2. 2.
    El Mhammedi MA, Achak M, Chtaini A (2009) J Hazard Mater 161:55–61CrossRefGoogle Scholar
  3. 3.
    Viyannalage LT, Bliznakov SB, Dimitrov N (2008) Anal Chem 80:2042–2049CrossRefGoogle Scholar
  4. 4.
    Darwish IA, Blake DA (2002) Anal Chem 74:52–58CrossRefGoogle Scholar
  5. 5.
    Tan MG, Zhang GL, Li XL, Zhang YX, Yue WS, Chen JM, Wang YS, Li AG, Zhang M, Shan ZC (2006) Anal Chem 78:8044–8055CrossRefGoogle Scholar
  6. 6.
    Taher MA (2003) Croatica Chem Acta 76:273–277Google Scholar
  7. 7.
    Vassileva E, Quetel C (2004) Anal Chim Acta 519:79–86CrossRefGoogle Scholar
  8. 8.
    Wan Z, Xu Z, Wang J (2006) Analyst 131:141–147CrossRefGoogle Scholar
  9. 9.
    Li J, Guo S, Zhai Y, Wang E (2009) Anal Chim Acta 649:196–201CrossRefGoogle Scholar
  10. 10.
    Jena BK, Raj CR (2008) Anal Chem 80:4836–4884CrossRefGoogle Scholar
  11. 11.
    Ramesh P, Sampath S (2001) Analyst 126:1872–1877CrossRefGoogle Scholar
  12. 12.
    Zen JM, Kumar AS, Tsai DM (2003) Electroanalysis 15:1073–1087CrossRefGoogle Scholar
  13. 13.
    Kooi SE, Schlecht U, Burghard M, Kern K (2002) Angew Chem 41:1353–1355CrossRefGoogle Scholar
  14. 14.
    Morton J, Havens N, Mugweru A, Wanekaya AK (2009) Electroanalysis 21:1597–1603CrossRefGoogle Scholar
  15. 15.
    Somashekarappa MP, Sampath S (2004) Anal Chim Acta 503:195–201CrossRefGoogle Scholar
  16. 16.
    Alexander MY, Kuwana T (1978) Anal Chem 50:640–645CrossRefGoogle Scholar
  17. 17.
    Jaegfeldt H, Kuwana T, Johansson G (1983) J Am Chem Soc 105:1805–1814CrossRefGoogle Scholar
  18. 18.
    Xu J, Chen Q, Swain GM (1998) Anal Chem 70:3146–3154CrossRefGoogle Scholar
  19. 19.
    Khan MR, Khoo SB (1996) Anal Chem 68:3290–3294CrossRefGoogle Scholar
  20. 20.
    Motta N, Guadalupe AR (1994) Anal Chem 66:566–571CrossRefGoogle Scholar
  21. 21.
    Pandurangappa M, Ramakrishnappa T (2010) Mater Chem Phys 122:567–573CrossRefGoogle Scholar
  22. 22.
    Wildgoose GG, Pandurangappa M, Lawrence NS, Jiang L, Jones GJJ, Compton RG (2003) Talanta 60:887–893CrossRefGoogle Scholar
  23. 23.
    Yang H, McCreery RL (1999) Anal Chem 71:4081–4087CrossRefGoogle Scholar
  24. 24.
    Pandurangappa M, Lawrence NS, Compton RG (2002) Analyst 127:1568–1571CrossRefGoogle Scholar
  25. 25.
    Boehm HP (1994) Carbon 32:759–769CrossRefGoogle Scholar
  26. 26.
    Ramesha GK, Sampath S (2007) Electroanalysis 19:2472–2478CrossRefGoogle Scholar
  27. 27.
    Pandurangappa M, Ramakrishnappa T, Compton RG (2009) Carbon 47:2186–2193CrossRefGoogle Scholar
  28. 28.
    Abiman P, Crossley A, Wildgoose GG, Jones JH, Compton RG (2007) Langmuir 23:7847–7852CrossRefGoogle Scholar
  29. 29.
    Shams E, Alibeygi F, Torabi R (2006) Electroanalysis 18:773–778CrossRefGoogle Scholar
  30. 30.
    Li Y, Liu X, Zeng X, Liu Y, Wei W, Luo S (2009) Sens Actuators B 139:604–610CrossRefGoogle Scholar
  31. 31.
    Degefa TH, Chandravanshi BS, Alemu H (1999) Electroanalysis 11:1305–1311CrossRefGoogle Scholar
  32. 32.
    Inczedy J (1976) Analytical applications of complex equilibria. Ellis Horwood, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gunigollahalli Kempegowda Raghu
    • 1
  • Srinivasan Sampath
    • 2
  • Malingappa Pandurangappa
    • 1
  1. 1.Department of Studies in ChemistryBangalore UniversityBangaloreIndia
  2. 2.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations