Journal of Solid State Electrochemistry

, Volume 16, Issue 3, pp 1291–1299 | Cite as

Electroless deposition of gold into poly-3,4-ethylenedioxythiophene films and their characterization performed in chloride-containing solutions

  • Veniamin V. KondratievEmail author
  • Nadejda A. Pogulaichenko
  • Suo Hui
  • Elena G. Tolstopjatova
  • Valery V. Malev
Original Paper


Au-containing polymer films were obtained by electroless deposition of gold from diluted solutions of HAuCl4 into preliminarily reduced poly-3,4-ethylenedioxythiophene (PEDOT) films. Structural peculiarities of such pristine and composite films were characterized by scanning and transmission electron microscopy methods. It was established that the gold clusters forming under such deposition appear on the outer surface of polymer films and their pores. The clusters’ sizes ranged between 30 and 100 nm depending on the time of exposition of a PEDOT film in solutions of Au(III) ions and the concentration of these ions. It was also observed that in contrast to pristine PEDOT films, cyclic voltammograms (CVs) of composite films in the presence of chloride ions show additional redox peaks resulting from oxidation of gold with formation of an insoluble product and followed by the product reduction under reversal of the potential scan direction. As a result of parallel electrochemical quartz crystal microbalance (EQCM) and CV measurements, it was also established that the number of chloride ions per one transferring electron in the gold oxidation process is near to unity. To elucidate the oxidation degree of gold in the presence of chloride ions, a special procedure of changing the electrode potential was used. It consisted of clamping the high anodic potential in the region of gold oxidation (0.97 V, Ag/AgCl) and subsequent gradual decrease of the electrode potential with a constant scan rate. Under these conditions, it was possible to completely oxidize all the gold particles containing in a composite film and find out the maximum amount of electricity consumed for the product particles’ reduction. A comparison between such data and the results obtained in EQCM determinations of the gold content in the same film led to the conclusion that the oxidation state of gold in the complexes formed is Au(III). The effects of chloride ion concentration and scan rate of the electrode potential on current responses of PEDOT–Au films were investigated. Some primary conclusions on the kinetics of the studied processes are made.


Conducting polymers Poly-3,4-ethylenedioxythiophene Cyclic voltammetry Transmitting electron microscopy Electrochemical quartz crystal microbalance Gold particles Composite materials 



The authors are thankful to Drs. Anton Bondarenko, Oleg Vyvenko, and Evgeny Ubyivovk for the help we have derived during common SEM and TEM measurements. We also thank the Russian Foundation for Basic Research (grants 07-03-00662 and 10-03-00793) and the St. Petersburg State University grant № for financial maintenance of this work.


  1. 1.
    Zanardi C, Terzi F, Pigani L, Heras A, Colina A (2008) Electrochim Acta 53:3916–3923CrossRefGoogle Scholar
  2. 2.
    Terzi F, Zanardi C, Martina V, Pigani L, Seeber R (2008) J Electroanal Chem 619–620:75–82Google Scholar
  3. 3.
    Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2008) Mater Lett 62:571–573CrossRefGoogle Scholar
  4. 4.
    Kim SY, Lee Y, Cho MS, Son Y, Chang JK (2007) Mol Cryst Liq Cryst 472:201–207Google Scholar
  5. 5.
    Harish S, Mathiyarasu J, Phani KLN (2009) Mater Res Bull 44:1828–1833CrossRefGoogle Scholar
  6. 6.
    Manesh KM, Santhosh P, Gopalan A, Lee KP (2008) Talanta 75:1307–1314CrossRefGoogle Scholar
  7. 7.
    Kumar SS, Mathiyarasu J, Phani KL (2005) J Electroanal Chem 578:95–103CrossRefGoogle Scholar
  8. 8.
    Li X, Li Y, Tan Y, Yang C, Li Y (2004) J Phys Chem B 108:5192–5199CrossRefGoogle Scholar
  9. 9.
    Selvaganesh S, Mathiyarasu J, Phani KLN, Yegnaraman V (2007) Nanoscale Res Lett 2:546–549CrossRefGoogle Scholar
  10. 10.
    Kumar SS, Kumar CS, Mathiyarasu J, Phani KLN (2007) Langmuir 23:3401–3408Google Scholar
  11. 11.
    Lu G, Li C, Shen J, Chen Z, Shi G (2007) J Phys Chem C 111:5926–5931CrossRefGoogle Scholar
  12. 12.
    Pogulaichenko NA, Hui S, Tolstopjatova EG, Malev VV, Kondratiev VV (2009) Russ J Electrochem 45:1176–1182CrossRefGoogle Scholar
  13. 13.
    Kim BY, Cho MS, Kim YS, Son Y, Lee Y (2005) Synth Met 153:149–152CrossRefGoogle Scholar
  14. 14.
    Huang X, Li Y, Chen Y, Wang L (2008) Sens Actuators B 134:780–786CrossRefGoogle Scholar
  15. 15.
    Li J, Lin XQ (2007) Anal Chim Acta 596:222–230CrossRefGoogle Scholar
  16. 16.
    Sarma TK, Chowdhury D, Paul A, Chattopadhyay A (2002) Chem Commun 10:1048–1049CrossRefGoogle Scholar
  17. 17.
    Hatchett DW, Josowicz M, Janata J (1999) Chem Mater 11:2989–2994CrossRefGoogle Scholar
  18. 18.
    Saheb A, Smith JA, Josowicz M, Janata J, Baer DR, Engelhard MH (2008) J Electroanal Chem 621:238–244CrossRefGoogle Scholar
  19. 19.
    Panda BR, Chattopadhyay A (2007) J Colloid Interface Sci 316:962–967CrossRefGoogle Scholar
  20. 20.
    Choudhury A (2009) Sens Actuators B 138:318–325CrossRefGoogle Scholar
  21. 21.
    Song FY, Shiu KK (2001) J Electroanal Chem 498:161–170CrossRefGoogle Scholar
  22. 22.
    Ocypa M, Ptasinska M, Michalska A, Maksymiuk K, Hall EAH (2006) J Electroanal Chem 596:157–168CrossRefGoogle Scholar
  23. 23.
    Namboothiry MAG, Zimmerman T, Colder FM, Liu J, Kim K, Carroll DL (2007) Synth Met 157:580–584CrossRefGoogle Scholar
  24. 24.
    Pacios R, Marcilla R, Pozo-Gonzalo C, Pomposo JA, Grande H, Aizpurua J, Mecerreyes D (2007) J Nanosci Nanotechnol 7:2938–2941CrossRefGoogle Scholar
  25. 25.
    Bobacka J, Lewenstam A, Ivaska A (2000) J Electroanal Chem 489:17–27CrossRefGoogle Scholar
  26. 26.
    Gustafson JC, Liedberg B, Inganas O (1994) Solid State Ionics 69:145–152CrossRefGoogle Scholar
  27. 27.
    Eliseeva SN, Spiridonova DV, Tolstopyatova EG, Kondratiev VV (2008) Russ J Electrochem 44:894–900CrossRefGoogle Scholar
  28. 28.
    Tolstopyatova EG, Pogulaichenko NA, Eliseeva SN, Kondratiev VV (2009) Russ J Electrochem 45:252–262CrossRefGoogle Scholar
  29. 29.
    Eliseeva SN, Babkova TA, Kondratiev VV (2009) Russ J Electrochem 45:152–159CrossRefGoogle Scholar
  30. 30.
    Eliseeva SN, Malev VV, Kondratiev VV (2009) Russ J Electrochem 45:1045–1051CrossRefGoogle Scholar
  31. 31.
    Lai LJ, Yang YW, Lin YK, Huang LL, Hsieh YH (2009) Colloids Surf B 68:130–135CrossRefGoogle Scholar
  32. 32.
    He X, Yuan R, Chai Y, Shi Y (2008) J Biochem Bioph Methods 70:823–829CrossRefGoogle Scholar
  33. 33.
    Rusanov AI (2006) Thermodynamic foundations of mechanochemistry. Nauka, St. PetersburgGoogle Scholar
  34. 34.
    Rusanov AI, Ur’ev NB, Eryukin PV, Movchan TG, Esipova NE (2004) Dokl Phys Chem 395:88–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Veniamin V. Kondratiev
    • 1
    Email author
  • Nadejda A. Pogulaichenko
    • 1
  • Suo Hui
    • 2
  • Elena G. Tolstopjatova
    • 1
  • Valery V. Malev
    • 1
    • 3
  1. 1.Department of ChemistrySaint Petersburg UniversitySaint PetersburgRussian Federation
  2. 2.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunPeople’s Republic of China
  3. 3.Institute of Cytology, Russian Academy of SciencesSaint PetersburgRussian Federation

Personalised recommendations