Journal of Solid State Electrochemistry

, Volume 16, Issue 3, pp 1219–1228 | Cite as

Fabrication parameter-dependent morphologies of self-organized ZrO2 nanotubes during anodization

  • Dong Fang
  • Jingang Yu
  • Zhiping Luo
  • Suqin Liu
  • Kelong Huang
  • Weilin Xu
Original Paper


Zirconia (ZrO2) nanotubes have been synthesized using a facile anodizing process in organic electrolyte systems containing a low content of fluoride. The nanotube architecture evolution was recorded at different anodization periods (1–24 h) by scanning electron microscopy. A compact layer was found between the Zr substrate and its upper tubular layer after 1 h of anodization, whereas after further anodization for 3 h the compact layer disappeared. Meanwhile, ZrO2 nanotubes turned to a uniform structure from top to bottom. However, after 18–24-h-long anodization, the uniform tubular layer was replaced by a random layer composed of various structural defects. Since the compact layer was not completely dissolved, the retained compact layer yielded O-rings with double walls on the outer surface of the nanotubes.


Anodization Electron microscopy Fabrication parameter Mechanism Morphology ZrO2 nanotube 



This work was supported by National Natural Science Foundation of China (No. 50772133), Innovation Projects for Graduates of Center South University (No. LA09014), and Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China (No. 1343–7113400102).


  1. 1.
    Weber J, Singhal R, Zekri S, Kumar A (2008) Intern Mater Rev 53:235–255CrossRefGoogle Scholar
  2. 2.
    Fang D, Huang KL, Liu SQ, Qin DY (2009) Electrochem Commun 11:901–904CrossRefGoogle Scholar
  3. 3.
    Allam NK, Feng XJ, Grimes CA (2008) Chem Mater 20:6477–6481CrossRefGoogle Scholar
  4. 4.
    Karlinsey RL (2005) Electrochem Commun 7:1190–1194CrossRefGoogle Scholar
  5. 5.
    Tsuchiya H, Macak JM, Sieber I, Schmuki P (2005) Small 1:722–725Google Scholar
  6. 6.
    Mukherjee N, Paulose M, Varghese OK, Mor GK, Grimes CA (2003) J Mater Res 18:2296–2299CrossRefGoogle Scholar
  7. 7.
    Ghicov A, Schmuki P (2009) Chem Commun 20:2791–2808CrossRefGoogle Scholar
  8. 8.
    Berger S, Jakubka F, Schmuki P (2009) Electrochem Solid State Lett 12:K45–K48CrossRefGoogle Scholar
  9. 9.
    Bao J, Tie C, Xu Z, Ma Q, Hong J, Sang H, Sheng D (2002) Adv Mater 14:44–47CrossRefGoogle Scholar
  10. 10.
    Shin HJ, Jeong DK, Lee JG, Sung MM, Kim JY (2004) Adv Mater 16:1197–1200CrossRefGoogle Scholar
  11. 11.
    Cao W, Tan OK, Zhu W, Jiang B, Gopal RCV (2001) Sensor Actuat B Chem 77:421–426CrossRefGoogle Scholar
  12. 12.
    Cho HJ, Choi GM (2008) J Power Sources 176:96–101CrossRefGoogle Scholar
  13. 13.
    Tsai PC, Lee JH, Chang CL (2007) Surf Coat Technol 202:719–724CrossRefGoogle Scholar
  14. 14.
    Fogaing EY, Huger M, Gault C (2007) J Eur Ceram Soc 27:1843–1848CrossRefGoogle Scholar
  15. 15.
    Jin G, Lu G, Guo Y, Guo Y, Wang J, Kong W, Liu X (2005) J Mol Catal A: Chem 232:165–172CrossRefGoogle Scholar
  16. 16.
    Tsuchiya H, Schmuki P (2004) Electrochem Commun 6:1131–1134CrossRefGoogle Scholar
  17. 17.
    Fang D, Huang KL, Luo ZP, Wang Y, Liu SQ, Zhang QG (2011) J Mater Chem 21:4989–4994CrossRefGoogle Scholar
  18. 18.
    Zhao JL, Wang XX, Xu RQ, Meng FB, Guo LM, Li YX (2008) Mater Lett 62:4428–4430CrossRefGoogle Scholar
  19. 19.
    Shin Y, Lee S (2009) Nanotechnology 20:105301–105305CrossRefGoogle Scholar
  20. 20.
    Guo L, Zhao J, Wang X, Xu R, Li Y (2009) J Solid State Electrochem 13:1321–1326CrossRefGoogle Scholar
  21. 21.
    Tsuchiya H, Macak JM, Taveira L, Schmuki P (2005) Chem Phys Lett 410:188–191CrossRefGoogle Scholar
  22. 22.
    Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P (2005) Corros Sci 47:3324–3335CrossRefGoogle Scholar
  23. 23.
    Vacandio F, Eyraud M, Chassigneux C, Knauth P, Djenizian T (2010) J Electrochem Soc 157:K279–K283CrossRefGoogle Scholar
  24. 24.
    Muratore F, Wiecheć AB, Hashimoto T, Skeldon P, Thompson GE (2010) Electrochem Commun 12:1727–1730CrossRefGoogle Scholar
  25. 25.
    Lockman Z, Sreekantan S, Ismail S, Schmidt-Mende L, MacManus-Driscoll JL (2010) J Alloy Compd 503:359–364CrossRefGoogle Scholar
  26. 26.
    Pouporte T, Finne J (2006) J App Electrochem 36:33–41CrossRefGoogle Scholar
  27. 27.
    Khalil N, Leach JS (1996) J App Electrochem 26:231–233CrossRefGoogle Scholar
  28. 28.
    Ismail S, Ahmad ZA, Berenov A, Lockman Z (2011) Corr Sci 53:1156–1164CrossRefGoogle Scholar
  29. 29.
    O'Sullivan JP, Wood GC (1970) Proc Roy Soc Lond A 317:511–543CrossRefGoogle Scholar
  30. 30.
    Shimizu K, Kobayashi K, Thompson GE, Skeldon P, Wood GC (1997) J Electrochem Soc 144:418–423CrossRefGoogle Scholar
  31. 31.
    Habazaki H, Fushimi K, Shimizu K, Skeldon P, Thompson GE (2007) Electrochem Commun 9:1222–1227CrossRefGoogle Scholar
  32. 32.
    Albu SP, Ghicov A, Aldabergenova S, Drechsel P, LeClere D, Thompson GE, Macak JM, Schmuki P (2008) Adv Mater 20:4135–4139Google Scholar
  33. 33.
    Berger S, Kunze J, Schmuki P, Valota AT, LeClere DJ, Skeldon P, Thompson GE (2010) J Electrochem Soc 157:C18–C23CrossRefGoogle Scholar
  34. 34.
    Mahesh RA, Jayaganthan R, Prakash S (2009) J Alloys Comp 468:392–405CrossRefGoogle Scholar
  35. 35.
    Stefanov P, Stoychev D, Valov I, Kakanakova-Georgieva A, Marinova T (2000) Mater Chem Phys 65:222–225CrossRefGoogle Scholar
  36. 36.
    Suzuki S, Yanagihara K, Hirokawa K (2000) Surf Interface Anal 30:372–376CrossRefGoogle Scholar
  37. 37.
    Cho BO, Lao S, Sha L, Chang JP (2001) J Vac Sci Technol A 19:2751–2761CrossRefGoogle Scholar
  38. 38.
    Ardelean H, Frateur I, Zanna S, Atrens A, Marcus P (2009) Corr Sci 51:3030–3038CrossRefGoogle Scholar
  39. 39.
    Ebert H, Knecht M, Muhler M, Helmer O, Bensch W (1995) J Phys Chem 99:3326–3330CrossRefGoogle Scholar
  40. 40.
    Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlogl R, Hart AJ, Hofmann S, Wardle BL (2009) J Am Chem Soc 131:12144–12154CrossRefGoogle Scholar
  41. 41.
    Balaceanu M, Braic M, Braic V, Vladescu A, Negrilaa CC (2005) J Optoelectron Adv Mater 7:2557–2560Google Scholar
  42. 42.
    Won YS, Kim YS, Varanasi VG, Kryliouk O, Anderson TJ, Sirimanne CT, McElwee-White L (2007) J Cryst Growth 304:324–332CrossRefGoogle Scholar
  43. 43.
    Li LJ, Yan DX, Lei JL, He JX, Wu SM, Pan FS (2011) Mater Lett 65:1434–1437CrossRefGoogle Scholar
  44. 44.
    Cong P, Mori S (2004) Tribol Lett 17:261–267CrossRefGoogle Scholar
  45. 45.
    Wang LN, Luo JL (2010) Electrochem Commun 12:1559–1562CrossRefGoogle Scholar
  46. 46.
    Muratore F, Hashimoto T, Skeldon P, Thompson GE (2011) Corr Sci 53:2299–2305CrossRefGoogle Scholar
  47. 47.
    Muratore F, Baron-Wiechec A, Hashimoto T, Gholinia A, Skeldon P, Thompson GE (2011) Growth of nanotubes on zirconium in glycerol/fluoride electrolytes. Electrochim Acta. doi: 10.1016/j.electacta.2010.12.089

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dong Fang
    • 1
    • 2
  • Jingang Yu
    • 2
  • Zhiping Luo
    • 3
  • Suqin Liu
    • 2
  • Kelong Huang
    • 2
  • Weilin Xu
    • 1
  1. 1.Key Lab of Green Processing and Functional Textiles of New Textile Materials, Ministry of EducationWuhan Textile UniversityWuhanChina
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Microscopy and Imaging Center and Materials Science and Engineering ProgramTexas A&M UniversityCollege StationUSA

Personalised recommendations