Journal of Solid State Electrochemistry

, Volume 16, Issue 3, pp 1099–1104 | Cite as

Electrocatalytic oxidation of glucose on nanoporous gold membranes

Original Paper

Abstract

With characteristic of structural integrity and high surface area, nanoporous gold (NPG) prepared by dealloying method is proposed to be a highly sensitive catalyst for glucose electrooxidation. It can be found that a-NPG which obtained by electrochemical corrosion method has the highest sensitivity for glucose electrooxidation among the three studied samples. Under alkaline conditions, the catalytic current density of a-NPG is over 1.5 times and 17 times higher than that of f-NPG (prepared by free corrosion) and poly-Au electrode, respectively. Using a-NPG sample for glucose detection, the obtained minimum sensible concentration are 413 nM in alkaline media and 1 μM in neutral solutions. The a-NPG electrode also shows stable recovery and reproducibility characteristics. These results indicate that NPG may work as an efficient electrode material for electrochemical sensors and a promising catalyst for alkaline glucose fuel cells.

Keywords

Glucose oxidation Nanoporous gold Electrocatalysis Detection Nonenzymatic sensor 

Notes

Acknowledgment

We thank Prof. Y. Ding and Houyi Ma for valuable discussions and sharing their nanomaterials and facilities.

References

  1. 1.
    Burke LD, Nugent PF (1997) Gold bull 30:43–53CrossRefGoogle Scholar
  2. 2.
    Burke LD, Nugent PF (1998) J Electroanal Chem 444:19–29CrossRefGoogle Scholar
  3. 3.
    Burke LD, Nuqent PF (1998) Gold Bull 31:39–50CrossRefGoogle Scholar
  4. 4.
    Chen A, Holt-Hindle P (2010) Chem Rev 110:3767–3804CrossRefGoogle Scholar
  5. 5.
    Chen A, Lipkowski J (1999) J Phys Chem B 103:682–691CrossRefGoogle Scholar
  6. 6.
    Ding Y, Chen MW (2009) MRS Bull 34:569–576CrossRefGoogle Scholar
  7. 7.
    Ding Y, Erlebacher J (2003) J Am Chem Soc 125:7772–7773CrossRefGoogle Scholar
  8. 8.
    Ding Y, Kim YJ, Erlebacher J (2005) Adv Mater 16:1897–1900CrossRefGoogle Scholar
  9. 9.
    Dong H, Cao XD (2009) J Phys Chem C 113:603–609CrossRefGoogle Scholar
  10. 10.
    Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Nature 410:450–453CrossRefGoogle Scholar
  11. 11.
    Ge XB, Wang RY, Cui SZ, Tian F, Xu LQ, Ding Y (2008) Electrochem Commun 10:1494–1497CrossRefGoogle Scholar
  12. 12.
    Ge XB, Wang RY, Liu PP, Ding Y (2007) Chem Mater 19:5827–5829CrossRefGoogle Scholar
  13. 13.
    Habrioux A, Sibert E, Servat K, Vogel W, Kokoh KB, Alonso-Vante N (2007) J Phys Chem B 111:10329–10333CrossRefGoogle Scholar
  14. 14.
    Hsiao MW, Adzic RR, Yeager EB (1996) J Electrochem Soc 143:759–767CrossRefGoogle Scholar
  15. 15.
    Huang JF (2008) Electroanalysis 20:2229–2234CrossRefGoogle Scholar
  16. 16.
    Huang W, Wang MH, Zheng JF, Li ZL (2009) J Phys Chem C 113:1800–1805CrossRefGoogle Scholar
  17. 17.
    Jia FL, Yu CF, Ai ZH, Zhang LZ (2007) Chem Mater 19:3648–3653CrossRefGoogle Scholar
  18. 18.
    Jia F, Yu CF, Deng KJ, Zhang LZ (2007) J Phys Chem C 111:8424–8431CrossRefGoogle Scholar
  19. 19.
    Kerzenmacher S, Ducre’e J, Zengerle R, Stetten FV (2008) J Power Sources 182:1–17CrossRefGoogle Scholar
  20. 20.
    Lee YJ, Park JY (2010) Sens Actuators B: Chem. doi: 10.1016/j.snb.201011037
  21. 21.
    Li YY, Ding Y (2010) J Phys Chem C 114:3175–3179CrossRefGoogle Scholar
  22. 22.
    Li Y, Song YY, Yang C, Xia XH (2005) Electrochem Commun 9:981–988CrossRefGoogle Scholar
  23. 23.
    Liu ZN, Huang LH, Zhang LL, Ma HY, Ding Y (2009) Electrochim Acta 54:7286–7293CrossRefGoogle Scholar
  24. 24.
    Oesch U, Janata J (1983) Electro chim Acta 28:1237–1246CrossRefGoogle Scholar
  25. 25.
    Park S, Chung TD, Kim HC (2003) Anal Chem 75:3046–3049CrossRefGoogle Scholar
  26. 26.
    Vassilyev YB, Khazova OA, Nikolaeva NN (1985) J Electroanal Chem 196:127–144CrossRefGoogle Scholar
  27. 27.
    Xu CX, Su JX, Xu XH, Liu PP, Zhao HJ, Tian F, Ding Y (2007) J Am Chem Soc 129:42–43CrossRefGoogle Scholar
  28. 28.
    Xu CX, Wang LQ, Wang RY, Wang K, Zhang Y, Tian F, Ding Y (2009) Adv Mater 21:2165–2169CrossRefGoogle Scholar
  29. 29.
    Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Electrochem Commun 6:66–70CrossRefGoogle Scholar
  30. 30.
    Yuan JH, Wang K, Xia XH (2005) Adv Funct Mater 15:803–809CrossRefGoogle Scholar
  31. 31.
    Zare HR, Habibirad AM (2006) J Solid State Electr 10:348–359CrossRefGoogle Scholar
  32. 32.
    Zhang JT, Liu PP, Ma HY, Ding Y (2007) J Phys Chem C 111:10382–10388CrossRefGoogle Scholar
  33. 33.
    Zhao CZ, Shao CL, Li MH, Jiao K (2007) Talanta 71:1769–1773CrossRefGoogle Scholar
  34. 34.
    Zhou YG, Yang S, Qian QY, Xia XH (2009) Electrochem Commun 11:216–219CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanChina
  2. 2.School of Chemistry and BioscienceYili Normal UniversityXinjiangChina

Personalised recommendations