Journal of Solid State Electrochemistry

, Volume 15, Issue 11–12, pp 2453–2459 | Cite as

Deposition of platinum monolayers on gold

  • István BakosEmail author
  • Sándor Szabó
  • Tamás Pajkossy
Original Paper


Deposition of small amount of Pt is reported onto polycrystalline Au from H2PtCl6-containing solutions. Spontaneous deposition, yielding about 5% of a full-packed monolayer, has been found at the steady-state open circuit potential. Formation of a somewhat more dense, but still a partial monolayer could be observed at potentials between the steady-state open circuit potential and that of the onset of bulk deposition. A specific difference of monolayer and bulk deposition is that Pt surface area levels off with time and keeps increasing for the former and latter types of deposition, respectively. Pt monolayers with quite high coverages can be formed in a rather narrow, 20–30 mV potential region only. The surface areas of Pt and of the Pt-free Au have been simultaneously measured as cyclic voltammetry peak charges. From these measurements, the site requirement of the Pt atoms was determined to be around four; that is, each Pt atom blocks the oxidation of about four underlying/neighbouring Au atoms, implying their distant positions. Based on the results, Au surfaces coated with monoatomic Pt layers of quite high coverages can be prepared.


Spontaneous Pt deposition Platinum Gold Monolayer Adsorption Underpotential deposition 



Financial support of the Hungarian Scientific Research Fund (OTKA-NKTH No. K-67874) is acknowledged.


  1. 1.
    Uosaki K, Ye S, Naohara H, Oda Y, Haba T, Kondo T (1997) J Phys Chem B 101:7566–7572CrossRefGoogle Scholar
  2. 2.
    Waibel HF, Kleinert M, Kibler LA, Kolb DM (2002) Electrochim Acta 47:1461–1467CrossRefGoogle Scholar
  3. 3.
    Whalen JJ, Weiland JD, Searson PC (2005) J Electrochem Soc 152:C738–C743CrossRefGoogle Scholar
  4. 4.
    Scheijen FJE, Bertramo GL, Hoeppener S, Housmans THM, Koper MTM (2008) J Solid State Electrochem 12:483–495CrossRefGoogle Scholar
  5. 5.
    Zei MS, Lei T, Ertl G (2003) Z Phys Chem 217:447–458CrossRefGoogle Scholar
  6. 6.
    Brankovic SR, Wang JX, Adžić RR (2001) Surf Sci 474:L173–L179CrossRefGoogle Scholar
  7. 7.
    Mrozek MF, Xie Y, Weaver MJ (2001) Anal Chem 73:5953–5960CrossRefGoogle Scholar
  8. 8.
    Van Brussel M, Kokkinidis G, Vandendael I, Buess-Herman C (2002) Electrochem Commun 4:808–813CrossRefGoogle Scholar
  9. 9.
    Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, Adzic RR (2003) Electrochim Acta 48:3841–3849CrossRefGoogle Scholar
  10. 10.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) J Phys Chem B 108:10955–10964CrossRefGoogle Scholar
  11. 11.
    Jin YD, Shen Y, Dong SJ (2004) J Phys Chem B 108:8142–8147CrossRefGoogle Scholar
  12. 12.
    Kongkanand A, Kuwabata S (2005) J Phys Chem B 109:23190–23195CrossRefGoogle Scholar
  13. 13.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) J Phys Chem B 109:22701–22704CrossRefGoogle Scholar
  14. 14.
    Kim YG, Kim JY, Vairavapandian D, Stickney JL (2006) J Phys Chem B 110:17998–18006CrossRefGoogle Scholar
  15. 15.
    Yoo SH, Park S (2007) Adv Mater 19:1612–1615CrossRefGoogle Scholar
  16. 16.
    Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Electrochem Commun 9:2848–2853CrossRefGoogle Scholar
  17. 17.
    Zhai JF, Huang MH, Dong SJ (2007) Electroanalysis 19:506–509CrossRefGoogle Scholar
  18. 18.
    Yoo SH, Park S (2008) Electrochim Acta 53:3656–3662CrossRefGoogle Scholar
  19. 19.
    Wang L, Guo SJ, Zhai JF, Hu XD, Dong SJ (2008) Electrochim Acta 53:2776–2781CrossRefGoogle Scholar
  20. 20.
    Yu YL, Hu YP, Liu XW, Deng WQ, Wang X (2009) Electrochim Acta 54:3092–3397CrossRefGoogle Scholar
  21. 21.
    Rettew RE, Guthrie JW, Alamgir FM (2009) J Electrochem Soc 156:D513–D516CrossRefGoogle Scholar
  22. 22.
    Brankovic SR, McBreen J, Adžić RR (2001) J Electroanal Chem 503:99–104CrossRefGoogle Scholar
  23. 23.
    Nagahara Y, Hara M, Yoshimoto S, Inukai J, Yau SH, Itaya K (2004) J Phys Chem B 108:3224–3230CrossRefGoogle Scholar
  24. 24.
    Strabac S, Petrovic S, Vasilic R, Kovac J, Zalar A, Rakocevic Z (2007) Electrochim Acta 53:998–1005CrossRefGoogle Scholar
  25. 25.
    Kim J, Jung C, Rhee CK, Lim TH (2007) Langmuir 23:10831–10836CrossRefGoogle Scholar
  26. 26.
    Du B, Tong YY (2005) J Phys Chem B 109:17775–17780CrossRefGoogle Scholar
  27. 27.
    Kim S, Jung C, Kim J, Rhee CK, Choi SM, Lim TH (2010) Langmuir 26:4497–4505CrossRefGoogle Scholar
  28. 28.
    Manandhar S, Kelber JA (2007) Electrochim Acta 52:5010–5017CrossRefGoogle Scholar
  29. 29.
    Uosaki K, Ye S, Oda Y, Haba T, Hamada K (1997) Langmuir 13:594–596CrossRefGoogle Scholar
  30. 30.
    Szabó S, Bakos I (1987) J Electroanal Chem 230:233–240CrossRefGoogle Scholar
  31. 31.
    Szabó S, Bakos I, Nagy F (1989) J Electroanal Chem 271:269–277CrossRefGoogle Scholar
  32. 32.
    Bakos I, Szabó S (1994) J Electroanal Chem 369:223–226CrossRefGoogle Scholar
  33. 33.
    Bakos I, Szabó S (2003) J Electroanal Chem 547:103–107CrossRefGoogle Scholar
  34. 34.
    Woods R (1976) Chemisorption at electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol. 9. Marcel Dekker, New York, p 1Google Scholar
  35. 35.
    Nowicka AM, Hasse U, Hermes M, Scholz F (2010) Angew Chem Int Ed 49:1061–1063CrossRefGoogle Scholar
  36. 36.
    Nowicka AM, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Angew Chem Int Ed 49:3006–3009CrossRefGoogle Scholar
  37. 37.
    Szabó S (1991) Int Rev Phys Chem 10:207–248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • István Bakos
    • 1
    Email author
  • Sándor Szabó
    • 1
  • Tamás Pajkossy
    • 1
  1. 1.Institute of Materials and Environmental Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations