Journal of Solid State Electrochemistry

, Volume 15, Issue 11–12, pp 2675–2681

Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite films

  • Sara Shariki
  • Soon Yee Liew
  • Wim Thielemans
  • Darren A. Walsh
  • Charles Y. Cummings
  • Liza Rassaei
  • Matthew J. Wasbrough
  • Karen J. Edler
  • Michael J. Bonné
  • Frank Marken
Original Paper

Abstract

Polyaniline of low molecular weight (ca. 10 kDa) is combined with cellulose nanofibrils (sisal, 4–5 nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4 nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline–nanocellulose composite. Measurements with a polyaniline–nanocellulose film applied across an ITO junction (a 700 nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2 V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.

Keywords

Polyaniline PANI Percolation Phase propagation rate Voltammetry Cellulose Nanocrystal Nanofibril Layer-by-layer assembly Junction Electrochromism Electrocatalysis 

References

  1. 1.
    Wertz JL, Mercier JP, Bédué O (2010) Cellulose science and technology. EFPL, LausanneGoogle Scholar
  2. 2.
    Macdiarmid AG, Epstein AJ (1995) Synth Metals 69:85CrossRefGoogle Scholar
  3. 3.
    Liu P, Zhang L (2009) Crit Rev Solid State Mater Sci 34:75CrossRefGoogle Scholar
  4. 4.
    Kim SH, Oh KW, Choi JH (2010) J Appl Polym Sci 116:2601Google Scholar
  5. 5.
    Houlton A, Pike AR, Galindo MA, Horrocks BR (2009) Chem Commun 14:1797–1806CrossRefGoogle Scholar
  6. 6.
    Tran HD, Li D, Kaner RB (2009) Adv Mater 21:1487CrossRefGoogle Scholar
  7. 7.
    Kang ET, Neoh KG, Tan KL (1998) Prog Polym Sci 23:277CrossRefGoogle Scholar
  8. 8.
    Negi YS, Adhyapak PV (2002) J Macromol Sci Polym Rev C42:35CrossRefGoogle Scholar
  9. 9.
    Wallace GG, Teasdale PR, Spinks GM, Kane-Maguire LAP (2008) Conductive electroactive polymers. CRC, New YorkCrossRefGoogle Scholar
  10. 10.
    Greef R, Kalaji M, Peter LM (1989) Farad Disc 88:277CrossRefGoogle Scholar
  11. 11.
    Tanami G, Gutkin V, Mandler D (2010) Langmuir 26:4239CrossRefGoogle Scholar
  12. 12.
    Abu YM, Aoki K (2005) Electrochim Acta 50:3634CrossRefGoogle Scholar
  13. 13.
    DeLongchamp DM, Hammond PT (2005) In: Jenekhe SA, Kiserow DJ (eds) Chromogenic phenomena in polymers—tunable optical properties. ACS Symp. Ser. 888:18Google Scholar
  14. 14.
    Žic M (2009) J Electroanal Chem 635:29CrossRefGoogle Scholar
  15. 15.
    Krinichnyi VI, Tokarev SV, Roth HK, Schrodner M, Wessling B (2005) Synth Metals 152:165CrossRefGoogle Scholar
  16. 16.
    Mo ZL, Zhao ZL, Chen H, Niu GP, Shi HF (2009) Carbohydrate Polym 75:660CrossRefGoogle Scholar
  17. 17.
    Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Soft Matter 4:2492CrossRefGoogle Scholar
  18. 18.
    van den Berg O, Schroeter M, Capadona JR, Weder C (2007) J Mater Chem 17:2746CrossRefGoogle Scholar
  19. 19.
    John A, Mahadeva SK, Kim J (2010) Smart Mater Struct 19:045011/1Google Scholar
  20. 20.
    Lin DS, Chou CT, Chen YW, Kuo KT, Yang SM (2006) J Appl Polym Sci 100:4023CrossRefGoogle Scholar
  21. 21.
    Mattoso LHC, Medeiros ES, Baker DA, Avloni J, Wood DF, Orts WJ (2009) J Nanosci Nanotechnol 9:2917CrossRefGoogle Scholar
  22. 22.
    Decher G, Schlenoff J (Eds) (2003) Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials, Wiley–VCH, WeinheimGoogle Scholar
  23. 23.
    Castelnovo M, Joanny JF (2000) Langmuir 16:7524CrossRefGoogle Scholar
  24. 24.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Intern Ed 44:3358CrossRefGoogle Scholar
  25. 25.
    Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479CrossRefGoogle Scholar
  26. 26.
    Aulin C, Johansson E, Wagberg L, Lindstrom T (2010) Biomacromol 11:872CrossRefGoogle Scholar
  27. 27.
    de Mesquita JP, Donnici CL, Pereira FV (2010) Biomacromol 11:473CrossRefGoogle Scholar
  28. 28.
    Liew SY, Thielemans W, Walsh DA (2010) J Phys Chem C 114:17926CrossRefGoogle Scholar
  29. 29.
    Jean B, Dubreuil F, Heux L, Cousin F (2008) Langmuir 24:3452CrossRefGoogle Scholar
  30. 30.
    Zhao Q, Qian JW, An QF, Sun ZW (2010) J Membrane Sci 346:335CrossRefGoogle Scholar
  31. 31.
    Bonné MJ, Milsom EV, Helton M, Thielemans W, Wilkins S, Marken F (2007) Electrochem Commun 9:1985CrossRefGoogle Scholar
  32. 32.
    Medeiros ES, Mattoso LHC, Bernardes-Filho R, Wood DF, Orts WJ (2008) Coll Polym Sci 286:1265CrossRefGoogle Scholar
  33. 33.
    de Rodriguez NLG, Thielemans W, Dufresne A (2006) Cellulose 13:261CrossRefGoogle Scholar
  34. 34.
    DeLongchamp DM, Hammond PT (2004) Chem Mater 16:4799CrossRefGoogle Scholar
  35. 35.
    John A, Mahadeva SK, Kim J (2010) Smart Mater Struct 19:045011CrossRefGoogle Scholar
  36. 36.
    Tsai TH, Wu YF (2006) J Electrochem Soc 153:C86CrossRefGoogle Scholar
  37. 37.
    Kuila BK, Stamm M (2010) J Mater Chem 20:6086CrossRefGoogle Scholar
  38. 38.
    Huang WS, Macdiarmid AG (1993) Polym 34:1833CrossRefGoogle Scholar
  39. 39.
    Farag AAM, Ashery A, Rafea MA (2010) Synth Metals 160:156CrossRefGoogle Scholar
  40. 40.
    Bonné MJ, Galbraith E, James TD, Wasbrough MJ, Edler KJ, Jenkins ATA, Helton M, McKee A, Thielemans W, Psillakis E, Marken F (2010) J Mater Chem 20:588CrossRefGoogle Scholar
  41. 41.
    Milsom EV, Novak J, Green SJ, Zhang XH, Stott SJ, Mortimer RJ, Edler K, Marken F (2007) J Solid State Electrochem 11:1109CrossRefGoogle Scholar
  42. 42.
    Atkins PW (2006) Physical chemistry, 8th edn. Oxford University Press, Oxford, 781Google Scholar
  43. 43.
    Kalaji M, Nyholm L, Peter LM (1992) J Electroanal Chem 325:269CrossRefGoogle Scholar
  44. 44.
    Aoki K, Kawase M (1994) J Electroanal Chem 377:125CrossRefGoogle Scholar
  45. 45.
    Malinauskas A (1999) Synth Metals 107:75CrossRefGoogle Scholar
  46. 46.
    Buttner E, Holze R (2001) J Electroanal Chem 508:150CrossRefGoogle Scholar
  47. 47.
    Duic L, Grigic S (2001) Electrochim Acta 46:2795CrossRefGoogle Scholar
  48. 48.
    Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York, p221Google Scholar
  49. 49.
    Group SE (2001) Instrumental methods in electrochemistry. Horwood Publishing, Chichester, 183Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sara Shariki
    • 1
  • Soon Yee Liew
    • 2
    • 3
  • Wim Thielemans
    • 2
    • 3
  • Darren A. Walsh
    • 2
  • Charles Y. Cummings
    • 1
  • Liza Rassaei
    • 1
  • Matthew J. Wasbrough
    • 1
  • Karen J. Edler
    • 1
  • Michael J. Bonné
    • 1
  • Frank Marken
    • 1
  1. 1.Department of ChemistryUniversity of BathBathUK
  2. 2.School of ChemistryUniversity of NottinghamNottinghamUK
  3. 3.Faculty of Engineering, Process and Environmental Research DivisionUniversity of NottinghamNottinghamUK

Personalised recommendations