Advertisement

Journal of Solid State Electrochemistry

, Volume 15, Issue 2, pp 349–356 | Cite as

NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries

  • Jan-Henning Trill
  • Chuangqi Tao
  • Martin Winter
  • Stefano Passerini
  • Hellmut Eckert
Original Paper

Abstract

Lithiation and delithiation of nanosilicon anodes of 100–200 nm diameter have been probed by ex situ solid-state high-resolution 7Li nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) methods. Samples were charged within pouch cells up to capacities of 1,500 mAh/g at 0.1 C, and subsequently discharged at the same rate. The NMR spectra reveal important quantitative information on the local lithium environments during the various stages of the charging/discharging process. The TEM experiments show that the electrochemical lithiation of nanosilicon particles results in core-shell materials, consisting of LixSi shells surrounding a core of residual silicon. The NMR spectra yield approximate Li/Si ratios of the lithium silicides present in the shells, based on the distinct local environments of the various types of 7Li nuclei present. The combination of NMR with TEM gives important quantitative conclusions about the nature of the electrochemical lithiation process: Following the initial formation of the solid electrolyte interphase layer, which accounts for an irreversible capacity of 240 mAh/g, lithium silicide environments with intermediate Li concentrations (Li12Si7, Li7Si3, and Li13Si4) are formed at the 500 to 1,000 mAh/g range during the charging process. At a certain penetration depth, further lithiation does not progress any further toward the interior of the silicon particles but rather leads to the formation of increasing amounts of the lithium-richest silicide, Li15Si4-type environments. Delithiation does not result in the reappearance of the intermediate-stage phases but rather only changes the amount of Li15Si4 present, indicating no microscopic reversibility. Based on these results, a detailed quantitative model of nanophase composition versus penetration depth has been developed. The results indicate the power and potential of solid-state NMR spectroscopy for elucidating the charging/discharging mechanism of nano-Si anodes.

Keywords

Nuclear Magnetic Resonance Silicon Particle Nuclear Magnetic Resonance Study Lithium Atom Irreversible Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding of this work by DFG project Ec168/9-1 within PAK 177 “Lithium Hochleistungsbatterien” is most gratefully acknowledged. We thank Professor Guido Schmitz for assistance with the TEM experiments and Drs. M. Miessen and P. Pilgram (Evonik, Degussa) for providing the nanosilicon materials.

References

  1. 1.
    Nesper R (1990) Prog Solid State Chem 20:1CrossRefGoogle Scholar
  2. 2.
    Nesper R, von Schnering HG (1987) J Solid State Chem 70:48CrossRefGoogle Scholar
  3. 3.
    Klemm W, Struck M (1955) Z Anorg Allg Chem 278:117CrossRefGoogle Scholar
  4. 4.
    Boukamp BA, Lesh GC, Huggins RA (1981) J Electrochem Soc 128:725CrossRefGoogle Scholar
  5. 5.
    Nesper R, von Schnering HG, Curda J (1986) Chem Ber 119:3576CrossRefGoogle Scholar
  6. 6.
    Frank U, Müller W, Schäfer H (1975) Z Naturforsch B 30:10Google Scholar
  7. 7.
    von Schnering HG, Nesper R, Tebbe KF, Curda J (1980) Z Metallkunde 71:357Google Scholar
  8. 8.
    von Schnering HG, Nesper R, Curda J, Tebbe KF (1980) Angew Chem 92:1070CrossRefGoogle Scholar
  9. 9.
    Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M (2003) J Power Sources 119–121:604CrossRefGoogle Scholar
  10. 10.
    Obrovac MN, Christensen L (2004) Electrochem Solid-State Lett 7:A93CrossRefGoogle Scholar
  11. 11.
    Hatchard TD, Dahn JR (2004) J Electrochem Soc 151:A838CrossRefGoogle Scholar
  12. 12.
    Hayes S, van Wullen L, Eckert H, Even WR, Crocker RW, Zhang Z (1997) Chem Mater 9:901CrossRefGoogle Scholar
  13. 13.
    Dedryvère R, Olivier-Fourcade J, Jumas J (2000) Ionics 6:397CrossRefGoogle Scholar
  14. 14.
    Dupre N, Martin J-F, Guyomard D, Yamada A, Kanno R (2008) J Mater Chem 18:4266CrossRefGoogle Scholar
  15. 15.
    Dupré N, Martin J-F, Guyomard D, Yamada A, Kanno R (2009) J Power Sources 189:557CrossRefGoogle Scholar
  16. 16.
    Key B, Bhattacharyya R, Morcrette M, Seznéc V, Tarascon J-M, Grey CP (2009) J Am Chem Soc 131:9239CrossRefGoogle Scholar
  17. 17.
    Key B, Bhattacharyya R, Grey CP, Abstract of Papers, 237th ACS National Meeting (March 2009) FUEL-048, CODEN 69LNK5, AN 2009:304252Google Scholar
  18. 18.
    Stearns LA, Gryko J, Diefenbacher J, Ramachandran GK, McMillan PF (2003) J Solid State Chem 173:251CrossRefGoogle Scholar
  19. 19.
    Dupke S, Langer T, Pöttgen R, Eckert H, manuscript in preparationGoogle Scholar
  20. 20.
    Xu YH, Yin GP, Zuo PJ (2008) Electrochim Acta 54:341CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jan-Henning Trill
    • 1
  • Chuangqi Tao
    • 1
  • Martin Winter
    • 1
  • Stefano Passerini
    • 1
  • Hellmut Eckert
    • 1
  1. 1.Institut für Physikalische ChemieWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations