Journal of Solid State Electrochemistry

, Volume 15, Issue 9, pp 1919–1926 | Cite as

Preparation and characterization of Bi0.75Er0.25O1.5 and Bi0.75Er0.125Y0.125O1.5 nanocrystalline ceramics by SPS

  • Rong Li
  • Qiang Zhen
  • Xionggang Lu
  • Michel Drache
  • Rose-Noëlle Vannier
Original Paper


Nanopowders of Bi0.75Er0.25O1.5 and Bi0.75Er0.125Y0.125O1.5 were prepared by a reverse titration chemical coprecipitation method under controlled pH conditions. After calcination at 500 °C for 3 h, powders with grain size in the order of 10 nm were obtained. In order to keep the nanosize of grains, these powders were densified by spark plasma sintering. Samples with relative density higher than 96% were prepared in only 10 min up to 500 °C with an average grain size of 15 and 11 nm for Bi0.75Er0.25O1.5 and Bi0.75Er0.125Y0.125O1.5, respectively. Impedance spectroscopy revealed slightly higher conductivity for the Bi0.75Er0.125Y0.125O1.5 composition compared to Bi0.75Er0.25O1.5 nanoceramic, but performances remained lower than the corresponding Bi0.75Er0.25O1.5 microcrystalline sample. However, mechanical properties of both nanocrystalline ceramics are improved when compared to microcrystalline samples.


Bi2O3–Er2O3 Bi2O3–Er2O3–Y2O3 Nanocrystalline ceramic SPS Ion conductivity Mechanical properties 



Authors are grateful to the French Embassy in China for funding R. Li grant as a co-tutorial Ph.D. between Shanghai University and the University of Lille. The authors also thank the Instrument Analysis Research Center of Shanghai University for their help in the characterization of materials (SEM, TEM, XRF) and Claude Estournes and his collaborators at the Plate-forme Nationale de Frittage Flash (PNF2) in Toulouse for their help during the sample sintering. The Leading Academic Discipline Project of Shanghai Municipal Education Commission (No. J50102), Key Project of Ministry of Education, China (No. 208043), Key Project of Shanghai Education Committee (No. 07zz10), and Magnolia Science and Technology Talent Fund (No. 2008B049) are also gratefully acknowledged for their funding.


  1. 1.
    Wachsman ED (2004) J Eur Ceram Soc 24:1281–1285CrossRefGoogle Scholar
  2. 2.
    Huang SG, Zhou GM, Xie Y (2008) J Alloys Compd 464:322–326CrossRefGoogle Scholar
  3. 3.
    Drache M, Roussel P, Wignacourt JP (2007) Chem Rev 107:80–96CrossRefGoogle Scholar
  4. 4.
    Verkerk MJ, Burggraaf AJ (1981) J Electrochem Soc 128:75–82CrossRefGoogle Scholar
  5. 5.
    Fung KZ, Virkar AV (1991) J Am Ceram Soc 74:1970–1980CrossRefGoogle Scholar
  6. 6.
    Jiang N, Wachsman ED, Jung S (2002) Solid State Ionics 150:347–353CrossRefGoogle Scholar
  7. 7.
    Jung DW, Duncan KL, Wachsman ED (2010) Acta Mater 58:355–363CrossRefGoogle Scholar
  8. 8.
    Boivin JC, Pirovano C, Nowogrocki G, Mairesse G, Labrune P, Lagrange G (1998) Solid State Ionics 113:639–651CrossRefGoogle Scholar
  9. 9.
    Pirovano C, Vannier RN, Capoen E, Nowogrocki G, Boivin JC, Mairesse G, Anne M, Doryhee E, Strobel P (2003) Solid State Ionics 159:167–179CrossRefGoogle Scholar
  10. 10.
    Kim GS, Kim HG, Kim DG, Oh ST, Suk MJ, Kim YD (2009) J Alloys Compd 469:401–405CrossRefGoogle Scholar
  11. 11.
    Wang JT, Yin DL, Liu JQ, Tao J, Su YL, Zhao X (2008) Scr Mater 59:63–66CrossRefGoogle Scholar
  12. 12.
    Li R, Zhen Q, Drache M, Rubbens A, Vannier RN (2010) J Alloys Compd 494:446–450CrossRefGoogle Scholar
  13. 13.
    He W, Zhen Q, Pan Q, Liu J (2003) Function material (China) 6:702–706Google Scholar
  14. 14.
    Stephen H, Stephen T (1963) Solubilities of inorganic compounds, vol. 1. Pergamon, OxfordGoogle Scholar
  15. 15.
    Ihsan B (2003) Thermochemical data of pure substances. Science, BeijingGoogle Scholar
  16. 16.
    Wada S, Suganuma M, Kitagawa Y, Murayama N (1999) J Ceram Soc Jpn 107:887–890CrossRefGoogle Scholar
  17. 17.
    Wang CZ (2000) Solid electrolyte and chemical sensors. Metallurgical Industry, BeijingGoogle Scholar
  18. 18.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  19. 19.
    Duran P, Jurado JR, Moure C, Valverde N, Steele BCH (1987) Mater Chem Phys 18:287–294CrossRefGoogle Scholar
  20. 20.
    Wang LS, Barnett SA (1992) J Electrochem Soc 139:2567–2572CrossRefGoogle Scholar
  21. 21.
    Mori T, Drennan J, Wang Y, Li JG, Ikegami T (2002) J Therm Anal Calorim 70:309–319CrossRefGoogle Scholar
  22. 22.
    Nakayama S (2002) Ceram Int 28:907–910CrossRefGoogle Scholar
  23. 23.
    Boulfrad S, Djurado E, Dessemond L (2008) Fuel Cells 5:313–321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rong Li
    • 1
    • 2
    • 3
  • Qiang Zhen
    • 1
    • 2
  • Xionggang Lu
    • 2
  • Michel Drache
    • 3
  • Rose-Noëlle Vannier
    • 3
  1. 1.Nano-science and Nano-technology Research CenterShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  3. 3.Unité de Catalyse et de Chimie du solide, CNRS UMR 8181, Ecole Nationale Supérieure de Chimie de LilleUniv. Lille Nord de FranceVilleneuve d’Ascq CedexFrance

Personalised recommendations