Advertisement

Journal of Solid State Electrochemistry

, Volume 15, Issue 6, pp 1139–1147 | Cite as

Performance of glucose electrooxidation on Ni–Co composition dispersed on the poly(isonicotinic acid) (SDS) film

  • Reza OjaniEmail author
  • Jahan-Bakhsh Raoof
  • Banafsheh Norouzi
Original Paper

Abstract

Poly(isonicotinic acid) (PINA) film was electrosynthesized on carbon paste electrode (CPE) by using the repeated potential cycling technique in aqueous solution containing isonicotinic acid (INA), sulfuric acid and sodium dodecyl sulfate (SDS). Then, nickel and cobalt ions were incorporated by immersion of CPE/PINA prepared in the presence of SDS (CPE/PINA(SDS)) in a solution with different proportions of nickel chloride and cobalt chloride. The electrochemical characterization of mixed hydroxides containing cobalt and nickel at the surface of the modified electrode is presented. The modified electrodes were successfully used in the electrocatalytic oxidation of glucose. Finally, the electrocatalytic oxidation peak currents of glucose exhibited a good linear dependence on concentration, and its quantification can be done easily. The good analytical performance, low cost and straightforward preparation method make this novel electrode material promising for the development of an effective glucose sensor.

Keywords

Poly(isonicotinic acid) Modified electrode Electrocatalysis Glucose SDS Nickel hydroxide Cobalt hydroxide 

References

  1. 1.
    Severcan F, Gorgulu G, Gorgulu ST, Guray T (2005) Rapid monitoring of diabetes-induced lipid peroxidation by fourier transform infrared spectroscopy. Anal Biochem 339:36CrossRefGoogle Scholar
  2. 2.
    Koschinsky T, Heinemann L (2001) Sensors for glucose monitoring: technical and clinical aspects. Res Rev 17:113Google Scholar
  3. 3.
    Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46CrossRefGoogle Scholar
  4. 4.
    Wang J (2008) In vivo glucose monitoring: towards “sense and act” feedback loop individualized medical systems. Talanta 75:636CrossRefGoogle Scholar
  5. 5.
    Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 369:71CrossRefGoogle Scholar
  6. 6.
    Desilvestro J, Haas O (1990) Metal oxide cathode materials for electrochemical energy storage: a review. J Electrochem Soc 137:5CCrossRefGoogle Scholar
  7. 7.
    Portemer F, Delahaye-Vidal A, Figlarz M (1992) Characterization of active material deposited at the nickel hydroxide electrode by electrochemical impregnation. J Electrochem Soc 139:671CrossRefGoogle Scholar
  8. 8.
    Krejci I, Vany’sek P (1994) Effect of zinc and iron ions on the electrochemistry of nickel oxide electrode: slow cyclic voltammetry. J Power Sources 47:79CrossRefGoogle Scholar
  9. 9.
    Maruyama T, Arai S (1996) Electrochromic properties of cobalt oxide thin-films prepared by chemical-vapor deposition. J Electrochem Soc 143:1383CrossRefGoogle Scholar
  10. 10.
    Nikolov I, Darkaoui R, Zhecheva E, Stoyanova R, Dimitrov N, Vitanov T (1997) Electrocatalytic activity of spinel related cobalties MxCo3-XO4 (M=Li, Ni, Cu) in the oxygen evolution reaction. J Electroanal Chem 429:157CrossRefGoogle Scholar
  11. 11.
    Cordoba SI, Carbonio RE, Lopez Teijelo M, Macagno VA (1986) The electrochemical response of binary mixtures of hydrous transition metal hydroxides co-precipitated on conducting substrates with reference to the oxygen evolution reaction. Electrochim Acta 31:1321CrossRefGoogle Scholar
  12. 12.
    Elahi MY, Mousavi MF, Ghasemi S (2008) Nano-structured Ni(II)-curcumin modified glassy carbon electrode for electrocatalytic oxidation of fructose. Electrochim Acta 54:490CrossRefGoogle Scholar
  13. 13.
    Elahi MY, Heli H, Bathaie SZ, Mousavi MF (2007) Electrocatalytic oxidation of glucose at a Ni-curcumin modified glassy carbon electrode. J Solid State Electrochem 11:273CrossRefGoogle Scholar
  14. 14.
    Zheng L, Zhang JQ, Song JF (2009) Ni(II)-quercetin complex modified multiwall carbon nanotube ionic liquid paste electrode and its electrocatalytic activity toward the oxidation of glucose. Electrochim Acta 54:4559CrossRefGoogle Scholar
  15. 15.
    Liu Y, Teng H, Hou HQ, You TY (2009) Nonenzymatic glucose sensor based on renewable electrospun ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24:3329CrossRefGoogle Scholar
  16. 16.
    Ojani R, Raoof JB, Salmany-Afagh P (2004) Electrocatalytic oxidation of some carbohydrates by poly (1-naphthylamine)/nickel modified carbon paste electrode. J Electroanal Chem 571:1CrossRefGoogle Scholar
  17. 17.
    Ojani R, Raoof JB, Fathi S (2008) Electrocatalytic oxidation of some carbohydrates by nickel/poly (o-aminophenol) modified carbon paste electrode. Electroanalysis 16:727Google Scholar
  18. 18.
    Vidotti M, Silva MR, Salvador RP, de Torresi SI Cordoba, Antonia LHD (2008) Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochim Acta 53:4030CrossRefGoogle Scholar
  19. 19.
    Provazi K, Giz MJ, Antonia LHD, de Torresi SI Cordoba (2001) The effect of Cd, Co and Zn as additives on nickel hydroxide opto-electrochemical behavior. J Power Sources 102:224CrossRefGoogle Scholar
  20. 20.
    McBreen J (1990) In: White RE, Bockris JOM, Conway BE (eds) Modern aspects of electrochemistry, vol 21. Plenum, New YorkGoogle Scholar
  21. 21.
    Cox P, Pletcher D (1990) Electrosynthesis at oxide coated electrodes part 1 the kinetics of ethanol oxidation at spinel electrodes in aqueous base. J Appl Electrochem 20:549CrossRefGoogle Scholar
  22. 22.
    Ojani R, Raoof JB, Hosseini SR (2008) Electrocatalytic oxidation of methanol on carbon paste electrode modified by nickel ions dispersed into poly (1, 5-diaminonaphthalene) film. Electrochim Acta 53:2402CrossRefGoogle Scholar
  23. 23.
    Ojani R, Raoof JB, Fathi S (2009) Poly (o-aminophenol) film prepared in the presence of sodium dodecyl sulfate: application for nickel ion dispersion and the electrocatalytic oxidation of methanol and ethylene glycol. Electrochim Acta 54:2190CrossRefGoogle Scholar
  24. 24.
    Eramo FD, Marioli JM, Arevalo AA, Sereno LE (1999) HPLC analysis of carbohydrates with electrochemical detection at a poly-1-naphthylamine/copper modified electrode. Electroanalysis 11:481CrossRefGoogle Scholar
  25. 25.
    Casella IG, Cataldi TRI, Guerrieri A, Desimoni E (1996) Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds. Anal Chim Acta 335:217CrossRefGoogle Scholar
  26. 26.
    Zhao H, Zhang Y, Yuan Z (2002) Poly (isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine. Anal Chim Acta 454:75CrossRefGoogle Scholar
  27. 27.
    Ojani R, Raoof JB, Norouzi B (2009) Electropolymerization of n-methylaniline in the presence of sodium dodecylsulfate and its application for electrocatalytic reduction of nitrite. J Mater Sci 44:4095CrossRefGoogle Scholar
  28. 28.
    Ojani R, Raoof JB, Norouzi B (2010) Carbon paste electrode modified by cobalt ions dispersed into poly (n-methylaniline) preparing in the presence of SDS: application in electrocatalytic oxidation of hydrogen peroxide. J Solid State Electrochem 14:621CrossRefGoogle Scholar
  29. 29.
    Pham MT, Maitz MF, Richter E, Reuther H, Prokert F, Mucklich A (2004) Electrochemical behaviour of nickel surface–alloyed with copper and titanium. J Electroanal Chem 572:185CrossRefGoogle Scholar
  30. 30.
    Jafarian M, Mahjani MG, Heli H, Gobal F, Khajehsharifi H, Hamedi MH (2003) A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim Acta 48:3423CrossRefGoogle Scholar
  31. 31.
    Casella IG (2002) Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes. J Electroanal Chem 520:119CrossRefGoogle Scholar
  32. 32.
    Cordoba de Torresi SI, Provazi K, Malta M, Torresi RM (2001) Effect of additives in the stabilization of the α phase of Ni(OH)2 electrodes. J Electrochem Soc 148:1179ACrossRefGoogle Scholar
  33. 33.
    Kim S, Tryk DA, Antonio MR, Carr R, Scherson DA (1994) In situ X-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes. J Phys Chem 98:10269CrossRefGoogle Scholar
  34. 34.
    Lide DR (1991) Handbook of chemistry and physics. CRC, Boca RatonGoogle Scholar
  35. 35.
    Vittal R, Gomathi H, Rao GP (2001) Derivatised nickel and cobalt oxide modified electrodes: effect of surfactant. J Electroanal Chem 497:47CrossRefGoogle Scholar
  36. 36.
    Zhao CZ, Shao CL, Li MH, Jiao K (2007) Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta 71:1769CrossRefGoogle Scholar
  37. 37.
    Safavi A, Maleki N, Farjami E (2009) Fabrication of glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655CrossRefGoogle Scholar
  38. 38.
    You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191CrossRefGoogle Scholar
  39. 39.
    Xu Q, Zhao Y, Xu JZ, Zhu JJ (2006) Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor. Sens Actuators B 114:379CrossRefGoogle Scholar
  40. 40.
    Özcan L, Sahin Y, Türk H (2008) Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt (II) phthalocyanine tetrasulfonate. Biosens Bioelectron 24:512CrossRefGoogle Scholar
  41. 41.
    Deng C, Chen J, Chen X, Xiao C, Nie L, Yao S (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23:1272CrossRefGoogle Scholar
  42. 42.
    Cheng X, Zhang S, Zhang H, Wang Q, He P, Fang Y (2008) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode. Food Chem 106:830CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Reza Ojani
    • 1
    Email author
  • Jahan-Bakhsh Raoof
    • 1
  • Banafsheh Norouzi
    • 1
    • 2
  1. 1.Electroanalytical Chemistry Research Laboratory, Faculty of ChemistryMazandaran UniversityBabolsarIran
  2. 2.Department of Chemistry, Faculty of Industry and EngineeringIslamic Azad University Ghaemshahr BranchGhaemshahrIran

Personalised recommendations