Journal of Solid State Electrochemistry

, Volume 15, Issue 2, pp 223–229 | Cite as

Intercalation and dynamics of hydrated Fe2+ in the vermiculites from Santa Olalla and Ojén

  • Anton LerfEmail author
  • Friedrich E. Wagner
  • Juan Poyato
  • José Luis  Pérez-Rodríguez
Original Paper


Although the intercalation of Fe3+ into layered phyllosicilicates—especially into smectites—attracted much attention in the past two decades, the information about Fe2+ loaded phyllosilicates is sparse. Here we present an investigation of the Fe2+ exchanged vermiculites from Santa Olalla and Ojén (Andalusia, Spain) by means of Mössbauer spectroscopy. The room temperature Mössbauer spectra are very similar to those of the starting compounds (Na forms) except for a decrease of the contribution of structural Fe3+ and a concomitant increase of the contribution of Fe2+ sites, indicating an internal redox process. The extent of this redox reaction is different for the two vermiculites. Thus, the intercalated Fe2+ acts as an electron mediator from the external medium to the structural Fe3+ ions. A new component attributable to intercalated Fe2+ is practically invisible in the room temperature Mössbauer spectra, but increases strongly and continuously during cooling to 4.2 K, where it is the dominant feature of the Mössbauer patterns. At 4.2 K, its quadruple splitting amounts to 3.31 mm/s, which is in excellent agreement with the quadrupole slitting of Fe2+ coordinated to six water molecules in a highly symmetric octahedral arrangement. The strong decrease of the Mössbauer–Lamb factor of this component with increasing temperature indicates a weak bonding of the Fe2+ in the interlayer space.


Vermiculite Intercalation Ferrous iron Mössbauer spectroscopy Mössbauer–Lamb factor Redox reaction 


  1. 1.
    Rigthor EG, Tzou MS, Pinnavaia TJ (1991) J Catal 130:29CrossRefGoogle Scholar
  2. 2.
    Gil A, Gandía LM, Vicente MA (2000) Catal Rev Sci Eng 42:145CrossRefGoogle Scholar
  3. 3.
    Manju M, Sugunan S (2005) React Kinet Catal 85:37CrossRefGoogle Scholar
  4. 4.
    Zhoua CH, Tonga DS, Baoa M, Dub ZX, Gea ZH, Li XN (2008) Top Catal 39:213CrossRefGoogle Scholar
  5. 5.
    Oates JM (1984) Clays Clay Miner 37:49CrossRefGoogle Scholar
  6. 6.
    Moreale A, Cloos P, Badot C (1985) Clay Miner 20:29CrossRefGoogle Scholar
  7. 7.
    Helson JA, Goodman BA (1983) Clay Miner 18:117CrossRefGoogle Scholar
  8. 8.
    Goodman BA, Helsen JA, Langouche G (1988) Hyperfine Interact 41:799CrossRefGoogle Scholar
  9. 9.
    Ramírez-Valle V, Lerf A, Wagner FE, Poyato J, Pérez-Rodríguez JL (2008) Clay Miner 43:487CrossRefGoogle Scholar
  10. 10.
    Kamei G, Oda C, Mitsui S, Shibata M, Shinozaki T (1999) Eng Geol 54:15CrossRefGoogle Scholar
  11. 11.
    Kozai N, Adachi Y, Kawamura S, Inada K, Kozaki T, Sato S, Ohashi H, Ohnuki T, Banba T (2001) J Nucl Sci Techn 38:1141CrossRefGoogle Scholar
  12. 12.
    Charlet L, Tournassat C (2005) Aquatic Geochem 11:115CrossRefGoogle Scholar
  13. 13.
    Géhin A, Grenèche JM, Tournassat C, Brendlé J, Rancourt DG, Charlet L (2007) Geochim Cosmochim Acta 71:863CrossRefGoogle Scholar
  14. 14.
    Stucki JW, Goodman BA, Schwertmann U (1988) Iron in soils and clay minerals. Reidel, DordrechtGoogle Scholar
  15. 15.
    Fischer WR (1988) In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals, chapt. 20. Reidel, Dordrecht, p 715Google Scholar
  16. 16.
    Stucki JW (2006) in Bergaya F. Theng BKG, Lagaly G, (eds.) Handbook of clay science, Elsevier, Vol. 1, chapt. 8, p. 423Google Scholar
  17. 17.
    Stanjek H, Marchel C (2008) Clay Miner 43:62CrossRefGoogle Scholar
  18. 18.
    Komadel P, Grygar T, Mehner H (1998) Clay Miner 33:593Google Scholar
  19. 19.
    Bailey SW (1988) In: Bailey SW (ed) Reviews inmMineralogy, Vol. 19. Mineralogical Society, Washington D.C., p 347Google Scholar
  20. 20.
    Laird J (1988) In: Bailey SW (ed) Reviews in mineralogy, Vol. 19. Mineralogical Society, Washington D.C., p 405Google Scholar
  21. 21.
    Gould K, Pe-Piper G, David JW, Piper DJW (2910) Sedimentology 57:587CrossRefGoogle Scholar
  22. 22.
    Sandström B, Annersten H, Tullborg EL (2010) Int J Earth Sci 99:1CrossRefGoogle Scholar
  23. 23.
    Poyato J, Pérez-Rodríguez JL, Ramírez-Valle V, Lerf A, Wagner FE (2009) Ultrasonics Sonication 16:570Google Scholar
  24. 24.
    Justo Erbez AJ (1984) Estudio fisicoquímico y mineralógico de vermiculitas de Andalucía y Badajoz. Ph.D. Thesis, SevillaGoogle Scholar
  25. 25.
    Wagner FE, Lerf A, Poyato Ferrera J, Justo A, Perez Rodriguez JL (2001) In: Rammelmair D, Mederer J, Oberthür T, Heimann RB, Pettinghaus H (eds) Applied mineralogy, Vol. 2. Balkema, Rotterdam, p 927Google Scholar
  26. 26.
    Lerf A, Wagner FE, Poyato J (2001) Solid State Ionics 141–142:479CrossRefGoogle Scholar
  27. 27.
    Wagner FE, Wagner U (2004) Hyperfine Interact 154:35CrossRefGoogle Scholar
  28. 28.
    De Grave E, van Alboom A (1991) Phys Chem Miner 18:337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anton Lerf
    • 1
    Email author
  • Friedrich E. Wagner
    • 2
  • Juan Poyato
    • 3
  • José Luis  Pérez-Rodríguez
    • 3
  1. 1.Walther-Meissner-Institut, Bayerische Akademie der WissenschaftenGarchingGermany
  2. 2.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  3. 3.Instituto de Ciencia de Materiales de SevillaConsejo Superior de Investigaciones Científicas-Universidad de SevillaSevillaSpain

Personalised recommendations