Advertisement

Journal of Solid State Electrochemistry

, Volume 15, Issue 3, pp 623–633 | Cite as

Structural and electrocatalytic features of Pt/C catalysts fabricated in supercritical carbon dioxide

  • Ernest E. Said-Galiyev
  • Alexander Yu. Nikolaev
  • Eduard E. Levin
  • Ekaterina K. Lavrentyeva
  • Marat O. Gallyamov
  • Sergei N. Polyakov
  • Galina A. Tsirlina
  • Oleg A. Petrii
  • Alexey R. Khokhlov
Original Paper

Abstract

Pt/carbon black samples fabricated from dimethyl (1,5-cyclooctadiene) platinum(II) in supercritical CO2 are characterized in relation to possible applications in methanol fuel cell. The problem of precise material characterization is addressed in frames of X-ray diffractometry, transmission electron microscopy, and electrochemical techniques of the true surface area determination. The catalysts with Pt loading of 20–40 wt.% consist of nm-size particles, with the lattice defectiveness dependent on the fabrication mode. To check the effect of support, various types of carbon blacks (Vulcan XC72R and acetylene black AC-1) are used. In contrast to commercial HiSpec catalysts, no pronounced increase of particle size with Pt loading is found. Specific steady-state activity towards methanol oxidation appears to be essentially higher than for commercial catalysts, mostly because the self-poisoning effects are less pronounced. As for poisoning of Pt with organic species (resulting from the ligand of precursor), its effects are demonstrated to be minor after CO or methanol adsorption accompanied by desorption of contaminating by-product.

Keywords

Supercritical carbon dioxide Pt nanoparticles Carbon supports Methanol electrooxidation X-ray diffractometry 

Notes

Acknowledgements

The work was done under financial support from the National Innovation Company New Energy Project and also was partly supported by RFBR, project 08-03-00854-а. The authors are grateful to Prof. P.M. Valetsky and A.S. Kotosonov for the samples of acetylene black AC-1 and fruitful discussions. M.O.G. and E.E.S.-G. are grateful to Russian Academy of Sciences for the support within Presidium's Basic Researches Program No 27.

References

  1. 1.
    Lin Y, Cui X, Yen C, Wai C (2005) J Phys Chem B 109:14410–14415CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Erkey C (2005) Ind Eng Chem Res 44:5312–5317CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Ind Eng Chem Res 44:4161–4164CrossRefGoogle Scholar
  4. 4.
    Bayrakceken A, Smirnova A, Kitkamthorn U, Aindow M, Turker L, Eroglu I, Erkey C (2008) J Power Sources 179:532–540CrossRefGoogle Scholar
  5. 5.
    Taylor AD, Sekol RC, Kizuka JM, D’Cunha S, Comisar CM (2008) J Catal 259:5–16CrossRefGoogle Scholar
  6. 6.
    Ang S-Y, Walsh DA (2010) J Power Sources 195:2557–2563CrossRefGoogle Scholar
  7. 7.
    Erkey C (2009) J Supercrit Fluids 47:517–522CrossRefGoogle Scholar
  8. 8.
    Saquing C, Cheng T-T, Aindow M, Erkey C (2004) J Phys Chem B 108:7716–7722CrossRefGoogle Scholar
  9. 9.
    Kaiser J, Simonov PA, Zaikovskii VI, Hartnig C, Jorissen L, Savinova ER (2007) J Appl Electrochem 37:1429–1437CrossRefGoogle Scholar
  10. 10.
    Klinedinst KA (1985) J Electrochem Soc 132:2044–2050CrossRefGoogle Scholar
  11. 11.
    Said-Galiev EE, Vygodskii YaS, Nikitin LN, Vinokur RA, Khokhlov AR, Pototskaya IA, Kireev VV, Schaumburg K (2004) Polym Science A 46:377–380Google Scholar
  12. 12.
    Misture ST, Chatfield LR, Snyder RL (1994) Powder Diffr 9:172–179Google Scholar
  13. 13.
    PCPDFWin (ver. 1.30, JCPDS ICDD, Swarthmore, PA, USA, 1997Google Scholar
  14. 14.
    Young RA (Ed.) (1993) The Rietveld Method. IUCr Monograph No.5, Oxford University Press, New York.Google Scholar
  15. 15.
    Lutterotti L, Matthies S, Wenk H-R (1999) IUCr: Newsletter of the CPD 21:14–15Google Scholar
  16. 16.
    Delhez R, Keijser TH, Langford JI, Louer D, Mittemeijer EJ, Sonneveld EJ (1993) Crystal imperfection broadening and peak shape in the Rietveld method. In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 132–166Google Scholar
  17. 17.
    Bayrakceken A, Kitkamthorn U, Aindow M, Erkey C (2007) Scr Mater 56:101–103CrossRefGoogle Scholar
  18. 18.
    Yen CH, Cui X, Pan H-B, Wang S, Lin Y, Wai CM (2005) J Nanosci Nanotechnol 5:1852–1857CrossRefGoogle Scholar
  19. 19.
    McCusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) J Appl Crystallogr 32:36–50CrossRefGoogle Scholar
  20. 20.
    Palosz B, Stelmakh S, Grzanka E, Gierlotka S, Palosz W (2007) Z Kristallogr 222:580–594CrossRefGoogle Scholar
  21. 21.
    Plyasova LM, Molina IYu, Gavrilov AN, Cherepanova SV, Cherstiouk OV, Rudina NA, Savinova ER, Tsirlina GA (2006) Electrochim Acta 51:4477–4488CrossRefGoogle Scholar
  22. 22.
    Langford JI, Louer D, Scardi P (2000) J Appl Crystallogr 33:964–974CrossRefGoogle Scholar
  23. 23.
    Cherstiouk OV, Gavrilov AN, Plyasova LM, Molina IYu, Tsirlina GA, Savinova ER (2008) J Solid State Electrochem 12:497–509CrossRefGoogle Scholar
  24. 24.
    Miller TM, Izumi AN, Shin Y-S, Whitesides GM (1988) J Am Chem Soc 110:3146–3156CrossRefGoogle Scholar
  25. 25.
    An G, Yu P, Mao L, Sun Zh, Liu Zh, Miao Sh, Miao Zh, Ding K (2007) Carbon 45:536–542CrossRefGoogle Scholar
  26. 26.
    Scardi P (2008) Microstructural properties: lattice defects and domain size effects. In: Dinnebeier RE, Billinge SJL (eds) Powder Diffraction: Theory and Practice. The Royal Society of Chemistry, Cambridge, pp 376–413CrossRefGoogle Scholar
  27. 27.
    Scardi P, Leoni M (2002) Acta Crystallogr A58:190–200Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ernest E. Said-Galiyev
    • 1
  • Alexander Yu. Nikolaev
    • 1
  • Eduard E. Levin
    • 2
  • Ekaterina K. Lavrentyeva
    • 2
  • Marat O. Gallyamov
    • 2
  • Sergei N. Polyakov
    • 2
    • 3
  • Galina A. Tsirlina
    • 2
  • Oleg A. Petrii
    • 2
  • Alexey R. Khokhlov
    • 1
    • 2
  1. 1.A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Technological Institute for Superhard and Novel Carbon MaterialsMoscow RegionRussia

Personalised recommendations