Journal of Solid State Electrochemistry

, Volume 15, Issue 3, pp 447–453 | Cite as

Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase on γ-Al2O3 nanoparticles/chitosan film-modified electrode

  • Xiaojuan Liu
  • Liqiang Luo
  • Yaping DingEmail author
  • Yanhong Xu
  • Fei Li


An amperometric biosensor based on horseradish peroxidase (HRP) and γ-Al2O3/chitosan composite film at a glassy carbon electrode has been developed. Hydrogen peroxide (H2O2) was detected with the aid of ferrocene monocarboxylic acid mediator to transfer electrons between the electrode and HRP. The morphology and composition of the modified electrode were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and amperometry. The effects of HRP concentration, the applied potential, and the pH values of the buffer solution on the response of the sensor were investigated for optimum analytical performance. The proposed biosensor showed high sensitivity (0.249 A M−1 cm−2) and a fast response (<5 s) to H2O2 with the detection limit of 0.07 μM. The linear response range of the enzyme electrode to H2O2 concentration was from 0.5 to 700 μM with a correlation coefficient of 0.9998. The apparent Michaelis-Menten constant of the biosensor was calculated to be 0.818 mM, exhibiting a high enzymatic activity and affinity for H2O2.


Horseradish peroxidase γ-Al2O3 Hydrogen peroxide Biosensor Glassy carbon electrode 



This research is supported by the National Natural Science Foundation of China (No. 20975066) and the Nano-Foundation of Science and Techniques Commission of Shanghai Municipality (No.0952 nm01500), Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102), and the Ph.D. Innovation Foundation of Shanghai University (No. SHUCX091030).


  1. 1.
    Kafi AKM, Wu GS, Chen AC (2008) Biosens Bioelectron 24:566CrossRefGoogle Scholar
  2. 2.
    Li NF, Lei T, Ouyang C, He YH, Liu Y (2009) Synth Met 159:1608CrossRefGoogle Scholar
  3. 3.
    Li F, Chen W, Tang CF, Zhang SS (2009) Talanta 77:1304CrossRefGoogle Scholar
  4. 4.
    Di JW, Shen CP, Peng SH, Tu YF, Li SJ (2005) Anal Chim Acta 553:196CrossRefGoogle Scholar
  5. 5.
    Lian WP, Wang L, Song YH, Yuan HZ, Zhao SC, Li P, Chen LL (2009) Electrochim Acta 54:4334CrossRefGoogle Scholar
  6. 6.
    Wang B, Zhang JJ, Pan ZY, Tao XQ, Wang HS (2009) Biosens Bioelectron 24:1141CrossRefGoogle Scholar
  7. 7.
    Li WJ, Yuan R, Chai YQ, Zhou L, Chen SH, Li N (2008) J Biochem Biophys Meth 70:830CrossRefGoogle Scholar
  8. 8.
    Ma LP, Yuan R, Chai YQ, Chen SH (2009) J Mol Catal B Enzym 56:215CrossRefGoogle Scholar
  9. 9.
    Zhang YW, Zhang Y, Wang H, Yan BN, Shen GL, Yu RQ (2009) J Electroanal Chem 627:9CrossRefGoogle Scholar
  10. 10.
    Zhang L, Zhang Q, Lu XB, Li JH (2007) Biosens Bioelectron 23:102CrossRefGoogle Scholar
  11. 11.
    Kong YT, Boopathi M, Shim YB (2003) Biosens Bioelectron 19:227CrossRefGoogle Scholar
  12. 12.
    Teng YJ, Zuo SH, Lan MB (2009) Biosens Bioelectron 24:1353CrossRefGoogle Scholar
  13. 13.
    Xu SY, Peng B, Han XZ (2007) Biosens Bioelectron 22:1807CrossRefGoogle Scholar
  14. 14.
    Zhu YH, Cao HM, Tang LH, Yang XL, Li CZ (2009) Electrochim Acta 54:2823CrossRefGoogle Scholar
  15. 15.
    Du ZF, Li CC, Li LM, Zhang M, Xu SJ, Wang TH (2009) Mater Sci Eng C 29:1794CrossRefGoogle Scholar
  16. 16.
    Jiang HJ, Du C, Zou ZQ, Li XW, Akins DL, Yang H (2009) J Solid State Electrochem 13:791CrossRefGoogle Scholar
  17. 17.
    Qian L, Yang XR (2006) Talanta 68:721CrossRefGoogle Scholar
  18. 18.
    Nagarale RK, Myung Lee J, Shin W (2009) Electrochim Acta 54:6508CrossRefGoogle Scholar
  19. 19.
    Shi QF, Li QB, Shan D, Fan Q, Xue HG (2008) Mater Sci Eng C 28:1372CrossRefGoogle Scholar
  20. 20.
    Li F, Wang Z, Chen W, Zhang SS (2009) Biosens Bioelectron 24:3030CrossRefGoogle Scholar
  21. 21.
    Lai GS, Zhang HL, Han DY (2008) Sens Actuators B 129:497CrossRefGoogle Scholar
  22. 22.
    lZhao XJ, Mai ZB, Kang XH, Zou XY (2008) Biosens Bioelectron 23:1032CrossRefGoogle Scholar
  23. 23.
    Kang JW, Li ZF, Lu XQ, Wang YS (2004) Electrochim Acta 50:19CrossRefGoogle Scholar
  24. 24.
    Liu BH, Hu RQ, Deng JQ (1997) Anal Chim Acta 341:161CrossRefGoogle Scholar
  25. 25.
    Chen SH, Yuan R, Chai YQ, Zhang LY, Wang N, Li XL (2007) Biosens Bioelectron 22:1268CrossRefGoogle Scholar
  26. 26.
    Khan R, Dhayal M (2008) Electrochem Commun 10:263CrossRefGoogle Scholar
  27. 27.
    Ansari AA, Solanki PR, Malhotra BD (2009) J Biotechnol 142:179CrossRefGoogle Scholar
  28. 28.
    Yang XS, Chen X, Zhang X, Yang WS, Evans DG (2008) Sens Actuators B 129:784CrossRefGoogle Scholar
  29. 29.
    Cao ZJ, Jiang XQ, Xie QJ, Yao SZ (2008) Biosens Bioelectron 24:222CrossRefGoogle Scholar
  30. 30.
    Wang BQ, Dong SJ (2000) Talanta 51:565CrossRefGoogle Scholar
  31. 31.
    Tong ZQ, Yuan R, Chai YQ, Xie Y, Chen SH (2007) J Biotechnol 128:567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Xiaojuan Liu
    • 1
  • Liqiang Luo
    • 1
  • Yaping Ding
    • 1
    Email author
  • Yanhong Xu
    • 1
  • Fei Li
    • 2
  1. 1.College of SciencesShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations