Journal of Solid State Electrochemistry

, Volume 14, Issue 11, pp 2129–2135 | Cite as

Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ciprofloxacin films

  • S. Ashok Kumar
  • Sea-Fue Wang
  • Chun-Ting Yeh
  • His-Chuan Lu
  • Jen-Chang Yang
  • Yu-Tsern Chang
Original Paper

Abstract

In this study, stable and homogenous thin films of multiwalled carbon nanotubes (MWCNTs) were obtained on conducting surface using ciprofloxacin (CF, fluoroquinolone antibiotic) as an effective-dispersing agent. Further, MWCNTs/CF film modified electrodes (glassy carbon and indium tin oxide-coated glass electrode) are used successfully to study the direct electrochemistry of proteins. Here, cytochrome C (Cyt-C) was used as a model protein for investigation. A MWCNTs/CF film modified electrode was used as a biocompatible material for immobilization of Cyt-C from a neutral buffer solution (pH 7.2) using cyclic voltammetry (CV). Interestingly, Cyt-C retained its native state on the MWCNTs/CF film. The Cyt-C adsorbed MWCNTs/CF film was characterized by scanning electron microscopy (SEM), UV–visible spectrophotometry (UV-vis) and CV. SEM images showed the evidence for the adsorption of Cyt-C on the MWCNTs/CF film, and UV–vis spectrum confirmed that Cyt-C was in its native state on MWCNTs/CF film. Using CV, it was found that the electrochemical signal of Cyt-C was highly stable in the neutral buffer solution and its redox peak potential was pH dependent. The formal potential (−0.27 V) and electron transfer rate constant (13 ± 1 s−1) were calculated for Cyt-C on MWCNTs/CF film modified electrode. A potential application of the Cyt-C/MWCNTs/CF electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2 × 10−6 to 7.8 × 10−5 M. The detection limit for determination of H2O2 has been found to be 1.0 × 10−6 M (S/N = 3). Thus, Cyt-C/MWCNTs/CF film modified electrode can be used as a biosensing material for sensor applications.

Keywords

Hydrogen peroxide sensor Biosensor Carbon nanotubes Cytochrome C 

References

  1. 1.
    Balasubramanian K, Burghard M (2005) Small 1:180CrossRefGoogle Scholar
  2. 2.
    Dai H (2002) Acc Chem Res 35:1035CrossRefGoogle Scholar
  3. 3.
    Trojanowicz M, Szewczynska M (2005) TrAC-Trend Anal Chem 24:92CrossRefGoogle Scholar
  4. 4.
    Wang J (2005) Electroanalysis 17:7CrossRefGoogle Scholar
  5. 5.
    Banks CE, Compton RG (2006) Analyst 131:15CrossRefGoogle Scholar
  6. 6.
    Wang J (2005) Analyst 130:421CrossRefGoogle Scholar
  7. 7.
    Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Anal Chim Acta 622:11CrossRefGoogle Scholar
  8. 8.
    Kumar SA, Chen SM (2008) Sensors 8:739CrossRefGoogle Scholar
  9. 9.
    Xin X, Xu G, Zhao T, Zhu Y, Shi X, Gong H et al (2008) J Phys Chem C 112:16377CrossRefGoogle Scholar
  10. 10.
    Rubianes MD, Rivas GA (2007) Electrochem Commun 9:480CrossRefGoogle Scholar
  11. 11.
    Sawada H, Naitoh N, Kasai R, Suzuki M (2008) J Mater Sci 43:1080CrossRefGoogle Scholar
  12. 12.
    Zou J, Liu L, Chen H, Khondaker SI, McCullough RD, Huo Q et al (2008) Adv Mater 20:2055CrossRefGoogle Scholar
  13. 13.
    Psomas G (2008) J Inorg Biochem 102:1798CrossRefGoogle Scholar
  14. 14.
    Michalska K, Pajchel G, Tyski S (2004) J Chromatogra A 1051:267CrossRefGoogle Scholar
  15. 15.
    Kumar SA, Wang SF (2009) Mater Lett 63:1830CrossRefGoogle Scholar
  16. 16.
    Bertini I, Cavallaro G, Rosato A (2006) Chem Rev 106:90CrossRefGoogle Scholar
  17. 17.
    Zhou J, Lu X, Hu J, Li J (2007) Chem Eur J 13:2847CrossRefGoogle Scholar
  18. 18.
    Zhang L (2008) Biosens Bioelectron 23:1610CrossRefGoogle Scholar
  19. 19.
    Laviron E (1979) J Electroanal Chem 101:19CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Zheng J (2008) Electrochim Acta 54:749CrossRefGoogle Scholar
  21. 21.
    Zhang L, Jiang X, Wang E, Dong S (2005) Biosens Bioelectron 21:337CrossRefGoogle Scholar
  22. 22.
    Yin ZZ, Zhao GC, Wei XW (2005) Chem Lett 34:992CrossRefGoogle Scholar
  23. 23.
    Xiang C, Zou Y, Sun LX, Xu F (2007) Talanta 74:206CrossRefGoogle Scholar
  24. 24.
    Chen Y, Yang XJ, Guo LR, Jin B, Xia XH, Zheng LM (2009) Talanta 78:248CrossRefGoogle Scholar
  25. 25.
    Xu JS, Zhao GC (2008) Electroanalysis 20:1200CrossRefGoogle Scholar
  26. 26.
    Kumar SA, Chen SM (2007) Biosens Bioelectron 22:3042CrossRefGoogle Scholar
  27. 27.
    Trivedi P, Vasudevan D (2007) Environ Sci Technol 41:3153CrossRefGoogle Scholar
  28. 28.
    Wang L, Wang E (2004) Electrochem Commun 6:49CrossRefGoogle Scholar
  29. 29.
    Kamin RA, Wilson GS (1980) Anal Chem 52:1198CrossRefGoogle Scholar
  30. 30.
    Wang BQ, Dong SJ (2000) Talanta 51:565CrossRefGoogle Scholar
  31. 31.
    Zhao GC, Yin ZZ, Zhang L, Wei XW (2005) Electrochem Commun 7:256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Ashok Kumar
    • 1
  • Sea-Fue Wang
    • 1
  • Chun-Ting Yeh
    • 1
  • His-Chuan Lu
    • 1
  • Jen-Chang Yang
    • 2
  • Yu-Tsern Chang
    • 3
  1. 1.Department of Materials and Mineral Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.Graduate Institute of Biomedical Materials and EngineeringTaipei Medical UniversityTaipeiTaiwan
  3. 3.Department of Chemical and Materials EngineeringNanya Institute of TechnologyJhongliTaiwan

Personalised recommendations