Journal of Solid State Electrochemistry

, Volume 14, Issue 8, pp 1383–1390 | Cite as

Influence of copper hexacyanoferrate film thickness on the electrochemical properties of self-assembled 3-mercaptopropyl gold electrode and application as a hydrazine sensor

  • Andréia de Morais
  • Fábio L. Pissetti
  • Alzira M. S. Lucho
  • Yoshitaka Gushikem
Original Paper

Abstract

A copper hexacyanoferrate film was obtained on a modified electrode prepared by self-assembly of 3-mercaptopropyltrimethoxysilane on a gold surface. The film thickness was controlled using a layer-by-layer technique to tune the electrocatalytic properties of the electrode. Two electrodes with different hexacyanoferrate film thicknesses were prepared via three immersions (AuS/CuHCF3) and six immersions (AuS/CuHCF6) of the film in the precursor solutions. Cyclic voltammetry data were obtained to determine the adequate film thickness. Scanning electron microscopy images showed a roughness increase due to the growth of the film thickness at the electrode surface. Electrochemical impedance spectroscopy showed distinct behavior for the two electrodes prepared; while diffusion and charge transfer processes can be observed in both electrodes, an additional capacitive process at intermediary frequencies was observed for the AuS/CuHCF6 electrode. The charge transfer resistance (R ct) for the AuS/CuHCF3 electrode (19.6 Ω cm2) was lower than for AuS/CuHCF6 (27.9 Ω cm2) due to the hexacyanoferrate film thickness, since the charge transfer process demands the simultaneous diffusion of K+ into the surface. Cyclic voltammetry was used to evaluate the application of the AuS/CuHCF3 electrode as an electrochemical sensor, revealing a linear correlation for hydrazine concentrations.

Keywords

3-mercaptopropyltrimethoxysilane Gold electrode Self-assembly Copper hexacyanoferrate 

Notes

Acknowledgments

F. L. P. thanks FAPEMIG for post-doctoral fellowship (CEX 00202/08). A.M.S.L. is indebted to FAPEMIG (CEX APQ-3716-5.02/07) and Y.G. to FAPESP for financial support. The authors are also indebted to Prof. Claudia Torres for manuscript revision.

References

  1. 1.
    Wang F, Wang J, Chen H, Dong S (2007) Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR. J Electroanal Chem 600:265–274CrossRefGoogle Scholar
  2. 2.
    Bilewicz R, Witomski J, Van der Heyden A, Tagu D, Palin B, Rogalska E (2001) Modification of electrodes with self-assembled hydrophobin layers. J Phys Chem B 105:9772–9777CrossRefGoogle Scholar
  3. 3.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. Biosens Bioelectron 21:389–407CrossRefGoogle Scholar
  4. 4.
    Bharathi S, Nogami M, Ikeda S (2001) Layer by layer self-assembly of thin films of metal hexacyanoferrate multilayers. Langmuir 17:7468–7471CrossRefGoogle Scholar
  5. 5.
    Shen Y, Wu T, Zhang Y, Li J (2005) Comparison of two-typed (3-mercaptopropyl)trimethoxysilane-based networks on Au substrates. Talanta 65:481–488CrossRefGoogle Scholar
  6. 6.
    Piwonski I, Grobelny J, Cichomski M, Celichowski G, Rogowski J (2005) Investigation of 3-mercaptopropyltrimethoxysilane self-assembled monolayers on Au(111) surface. Appl Surf Sci 242:147–153CrossRefGoogle Scholar
  7. 7.
    Sibottier E, Sayen S, Gaboriaud F, Walcarius A (2006) Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups. Langmuir 22:8366–8373CrossRefGoogle Scholar
  8. 8.
    Yang G, Shen Y, Wang M, Chen H, Liu B, Dong S (2006) Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution. Talanta 68:741–747CrossRefGoogle Scholar
  9. 9.
    de Tacconi NR, Rajeshwar K, Lezna RO (2003) Metal Hexacyanoferrates: electrosynthesis, in situ characterization, and applications. Chem Mater 15:3046–3062CrossRefGoogle Scholar
  10. 10.
    Cheng WL, Dong SJ, Wang EK (2003) Site-selective self-assembly of MPA-bridged CuHCF multilayers on APTMS-supported gold colloid electrodes. Chem Mater 15:2495–2501CrossRefGoogle Scholar
  11. 11.
    Pauliukaite R, Hocevar SB, Hutton EA, Ogorevc B (2008) Novel electrochemical microsensor for hydrogen peroxide based on iron-ruthenium hexacyanoferrate modified carbon fiber electrode. Electroanalysis 20:47–53CrossRefGoogle Scholar
  12. 12.
    Prabakar SJR, Narayanan SS (2008) Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach. J Electroanal Chem 617:111–120CrossRefGoogle Scholar
  13. 13.
    Salimi A, Miranzadeh L, Hallaj R (2008) Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives. Talanta 75:147–156Google Scholar
  14. 14.
    Chen SM, Wu MH, Thangamuthu R (2008) Preparation, characterization, and electrocatalytic properties of cobalt oxide and cobalt hexacyanoferrate hybrid films. Electroanalysis 20:178–184CrossRefGoogle Scholar
  15. 15.
    Marafon E, Lucho AMS, Francisco MSP, Landers R, Gushikem Y (2006) Thin film of copper hexacyanoferrate dispersed on the surface of a conducting carbon ceramic material, SiO2/ZrO2/C-graphite: Characteristics and electrochemical studies. J Braz Chem Soc 17:1605–1611CrossRefGoogle Scholar
  16. 16.
    Pissetti FL, Francisco MSP, Landers R, Gushikem Y (2007) Phosphoric acid adsorbed on silica-ceria matrix obtained by sol-gel method: Studies of local structure, texture and acid property. J Braz Chem Soc 18:976–983CrossRefGoogle Scholar
  17. 17.
    Lucho AMS, Pissetti FL, Gushikem Y (2004) Al2O3-coated 3-N-propylpyridinium chloride silsesquioxane polymer film: preparation and electrochemical property study of adsorbed cobalt tetrasulfophthalocyanine. J Colloid Interface Sci 275:251–256CrossRefGoogle Scholar
  18. 18.
    Fujiwara ST, Pessoa CA, Gushikem Y (2003) Hexacyanoferrate ion adsorbed on propylpyridiniumsilsesquioxane polymer film-coated SiO2/Al2O3: use in an electrochemical oxidation study of cysteine. Electrochim Acta 48:3625–3631CrossRefGoogle Scholar
  19. 19.
    Baioni AP, Vidotti M, Fiorito PA, Ponzio EA, de Torresi SIC (2007) Synthesis and characterization of copper hexacyanoferrate nanoparticles for building up long-term stability electrochromic electrodes. Langmuir 23:6796–6800CrossRefGoogle Scholar
  20. 20.
    Wu BY, Hou SH, Yu M, Qin X, Li S, Chen Q (2009) Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mater Sci Eng C-Biomim Supramol Syst 29:346–349Google Scholar
  21. 21.
    Ou CF, Chen SH, Yuan R, Chai YQ, Zhong X (2008) Layer-by-layer self-assembled multilayer films of multi-walled carbon nanotubes and platinum-Prussian blue hybrid nanoparticles for the fabrication of amperometric immunosensor. J Electroanal Chem 624:287–292CrossRefGoogle Scholar
  22. 22.
    Kahlert H, Retter U, Lohse H, Siegler K, Scholz F (1998) On the determination of the diffusion coefficients of electrons and of potassium ions in copper(II) hexacyanoferrate(II) composite electrodes. J Phys Chem B 102:8757–8765CrossRefGoogle Scholar
  23. 23.
    Karyakin AA (2001) Prussian Blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819CrossRefGoogle Scholar
  24. 24.
    Siperko LM, Kuwana T (1983) Electrochemical and spectroscopic studies of metal hexacyanometalate films. 1. Cupric hexacyanoferrate. J Electrochem Soc 130:396–402CrossRefGoogle Scholar
  25. 25.
    Prabakar SJR, Narayanan SS (2007) Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode. Talanta 72:1818–1827CrossRefGoogle Scholar
  26. 26.
    Rutkowska IA, Stroka J, Galus Z (2008) Electrochemical properties of modified copper–thallium hexacyanoferrate electrode in the presence of different univalent cations. Electrochim Acta 53:3870–3878CrossRefGoogle Scholar
  27. 27.
    Chen SM, Chan CM (2003) Preparation, characterization, and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes. J Electroanal Chem 543:161–173CrossRefGoogle Scholar
  28. 28.
    Makowski O, Stroka J, Kulesza PJ, Malik MA, Galus Z (2002) Electrochemical identity of copper hexacyanoferrate in the solid-state: evidence for the presence and redox activity of both iron and copper ionic sites. J Electroanal Chem 532:157–164CrossRefGoogle Scholar
  29. 29.
    Siperko LM, Kuwana T (1987) Electrochemical and spectroscopic studies of metal hexacyanometalate films. 3. Equilibrium and kinetic-studies of cupric hexacyanoferrate. Electrochim Acta 32:765–771CrossRefGoogle Scholar
  30. 30.
    de Tacconi NR, Rajeshwar K, Lezna RO (2006) Electrochemical impedance spectroscopy and UV-vis reflectance spectroelectrochemistry of cobalt hexacyanoferrate films. J Electroanal Chem 587:42–55CrossRefGoogle Scholar
  31. 31.
    Abbaspour A, Kamyabi MA (2005) Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films. J Electroanal Chem 576:73–83CrossRefGoogle Scholar
  32. 32.
    Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199–204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Andréia de Morais
    • 1
  • Fábio L. Pissetti
    • 1
  • Alzira M. S. Lucho
    • 1
  • Yoshitaka Gushikem
    • 2
  1. 1.Departamento de Ciências ExatasUniversidade Federal de AlfenasAlfenasBrazil
  2. 2.Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations