Journal of Solid State Electrochemistry

, Volume 14, Issue 8, pp 1401–1413 | Cite as

The influence of the conditions of the anodic formation and the thickness of Ag(I) oxide nanofilm on its semiconductor properties

  • Alexander Vvedenskii
  • Svetlana Grushevskaya
  • Dmitrii Kudryashov
  • Sergei Ganzha
Original Paper


The anodic formation of Ag(I) oxide nanofilms on polycrystalline silver and Ag–Au alloys as well as on low-index single crystals of silver in 0.1 М KOH was examined. By the methods of photocurrent i ph and photopotential E ph measurements, the n-type conductivity of Ag2O film was established. Since the film (6–120 nm) is thinner than the space charge region, the dependence of photocurrent and photopotential appears on the film thickness L: i ph ~L and E ph ~L 2. The transition from polycrystalline silver to single crystals as well as the addition of a small amount of gold (X Au ≤ 4 at.%) into the silver lattice decreases the degree of deviation from the stoichiometric composition Ag2O. The parameters of Ag2O film (optical absorption coefficient α, donor defects concentration N D, space charge region W, and Debye’s length of screening L D) depend on the index of a crystal face of silver, volume concentration of gold X Au in the alloy, and film-formation potential E. At Е = 0.52 V, the sequences of variation of these parameters correlate with the reticular density sequence. The growth of the potential disturbs these sequences. The band gap in Ag2O formed on Agpoly, Aghkl, and Ag–Au is 2.32, 2.23, and 2.19 eV. Flat band potential in Ag(I) oxide, formed on Agpoly in 0.5 M KOH is 0.37 V. The appearance of the clear dependence between the state of the oxide/metal interface and the structure-sensitive parameters of semiconductor Ag(I) oxide phase allows considering the anodic formation of Ag2O on Ag as a result of the primary direct electrochemical reaction, not of the precipitation from the near-electrode layer.


Anodic oxide formation Nanofilm Silver Silver–gold alloys Photocurrent Photopotential 



We are grateful to Professor Leonid Kazanskiy (The Institute of Physical Chemistry and Electrochemistry of Russian Academy of Science) for the assistance in the XPS investigations.

This work is supported by Russian Foundation of Basic Research (project 09-03-00554-a).


  1. 1.
    Hampson NA, Lee JB, Morley JR (1971) Electrochim Acta 16:637CrossRefGoogle Scholar
  2. 2.
    Clarke TG, Hampson NA, Lee JB, Morley JR, Scanlon B (1969) Ber Buns Phys Chem 73:279Google Scholar
  3. 3.
    Becerra JG, Salvarezza RC, Arvia AJ (1990) Electrochim Acta 35:595CrossRefGoogle Scholar
  4. 4.
    Alonso C, Salvarezza RC, Vara JM, Arvia AJ (1990) Electrochim Acta 35:489CrossRefGoogle Scholar
  5. 5.
    Ambrose J, Barradas RG (1974) ElectrochimActa 19:781CrossRefGoogle Scholar
  6. 6.
    Teijelo ML, Vilche JR, Arvia AJ (1984) J Electroanal Chem 162:207CrossRefGoogle Scholar
  7. 7.
    Tilak BV, Perkins RS, Kozlovska HA, Conway BE (1972) Electrochim Acta 17:1447CrossRefGoogle Scholar
  8. 8.
    Vidovich GL, Leikis DI, Kabanov BN (1962) Doklady Akademii Nauk SSSR 142:109Google Scholar
  9. 9.
    Droog JMM (1980) J Electroanal Chem 115:225CrossRefGoogle Scholar
  10. 10.
    Doubova LM, Daolio S, Pagura C, De Battisti A, Trasatti S (2002) Russian J Electrochem 38:20CrossRefGoogle Scholar
  11. 11.
    Savinova ER (2006) Razmernye i strukturnye effekty v elektrokatalize. Dissertation, Novosibirsk, RussiaGoogle Scholar
  12. 12.
    Savinova E, Zemlyanov D, Pettinger B, Scheybal A, Schlogl R, Doblhofer K (2000) Electrochim Acta 46:175CrossRefGoogle Scholar
  13. 13.
    Nechaev IV, Vvedenskii AV (2008) Sorbtsionnye I khromatograficheskiye protsessy 8:753Google Scholar
  14. 14.
    Nechaev IV, Vvedenskii AV (2009) Prot Met Phys Chem Surf 45:137Google Scholar
  15. 15.
    Marshakov IK, Vvedenskii AV, Kondrashin VY, Bokov GA (1988) Anodnoye Rastvoreniye i Selektivnaya Korroziya Splavov. VSU, VoronezhGoogle Scholar
  16. 16.
    Pickering HW (1968) J Electrochem Soc 115:143CrossRefGoogle Scholar
  17. 17.
    Kaiser H. (1987) Chem Industries, Corrosion Mechanism. New York, Basel, 28: 85Google Scholar
  18. 18.
    Kaesche H (1979) Die Korrosion der Metalle. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  19. 19.
    Kuznetsova ТА, Flegel’ EV, Vvedenskii AV (2002) Prot Met 38:333CrossRefGoogle Scholar
  20. 20.
    Kudryashov DA (2008) Anodnoye formirovaniye i svoistva nanoplyonki oksida Ag(I) na poli-, monokristallakh serebra i Ag, Au-splavakh. Dissertation, Voronezh, RussiaGoogle Scholar
  21. 21.
    Vvedenskii А, Grushevskaya S, Kudryashov D, Kuznetsova T (2007) Corros Sci 49:4523CrossRefGoogle Scholar
  22. 22.
    Forty AI, Rowlands G (1981) Phyl Mag 43A:171CrossRefGoogle Scholar
  23. 23.
    Poate IM (1980) Gold Bull 14:2Google Scholar
  24. 24.
    Roldugin VI (2008) Fizikokhimiya poverkhnosti. Intellect, MoscowGoogle Scholar
  25. 25.
    Kapusta S, Hackerman N (1980) Electrochim Acta 25:1001CrossRefGoogle Scholar
  26. 26.
    McAleer JF, Peter LM (1980) Farad Discuss Chem Soc 70:67CrossRefGoogle Scholar
  27. 27.
    Collisi U, Strehblow HH (1990) J Electroanal Chem 284:85CrossRefGoogle Scholar
  28. 28.
    Bard AJ, Stratmann M, Licht S (eds) (2002) Encyclopedia of electrochemistry. V.6: Semiconductor electrodes and photoelectrochemistry. Wiley-VCH, WeinheimGoogle Scholar
  29. 29.
    Zoski CG (ed) (2007) Handbook of electrochemistry. Elsevier, New Mexico State UniversityGoogle Scholar
  30. 30.
    Pleskov YV, Gurevich YY (1986) Semiconductor photoelectrochemistry. Consultant Bureau, New YorkGoogle Scholar
  31. 31.
    Oshe EK, Rozenfel'd IL (1978) Itogi nauki I tekhniki. VINITI. Korroziya i zaschita ot korrozii: 111Google Scholar
  32. 32.
    Finklea HO (ed) (1988) Semiconductor electrodes. Elsevier, New YorkGoogle Scholar
  33. 33.
    Kudryashov DA, Grushevskaya SN, Vvedenskii AV (2007) Kondensirovannye sredy I mezhfaznye granitsy 9:53Google Scholar
  34. 34.
    Kudryashov DA, Grushevskaya SN, Vvedenskii АV (2007) Prot Met Phys Chem Surf 43:591Google Scholar
  35. 35.
    Vvedenskii A, Grushevskaya S, Kudryashov D, Ganzha S (2008) Surf Interface Anal 40:636CrossRefGoogle Scholar
  36. 36.
    Luck’yanchilov AN, Grushevskaya SN, Kudryashov DA, Vvedenskii AV (2006) The environment for the photopotential measurement, Patent no. 55988 RF. Bulletin "Invitations. Useful models" 24: 3Google Scholar
  37. 37.
    Vvedenskii AV, Grushevskaya SN, Kudryashov DA, Luck’yanchilov AN (2007) The environment for the photocurrent measurement, Patent no. 66052 RF. Bulletin "Invitations. Useful models" 24: 3Google Scholar
  38. 38.
    Scheblykina GE, Bobrinskaya EV, Vvedenskii AV (1998) Prot Met 34:6Google Scholar
  39. 39.
    Kozaderov OA, Vvedenskii AV (2005) Prot Met 41:211CrossRefGoogle Scholar
  40. 40.
    Wilson RH (1977) J Appl Phys 48:4292CrossRefGoogle Scholar
  41. 41.
    Sutter EMM, Millet B, Fiaud C, Lincolt D (1995) J Electroanal Chem 386:101CrossRefGoogle Scholar
  42. 42.
    Jiang ZY, Huang SY, Qian B (1994) Electrochim Acta 16:2465CrossRefGoogle Scholar
  43. 43.
    Chatterjee K, Banerjee S, Chakravorty D (2002) Phys Rev B 66:854211Google Scholar
  44. 44.
    Kudryashov DA, Grushevskaya SN, Vvedenskii AV (2008) Prot Met Phys Chem Surf 44:301Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alexander Vvedenskii
    • 1
  • Svetlana Grushevskaya
    • 1
  • Dmitrii Kudryashov
    • 1
  • Sergei Ganzha
    • 1
  1. 1.Department of Physical ChemistryVoronezh State UniversityVoronezhRussia

Personalised recommendations