Journal of Solid State Electrochemistry

, Volume 14, Issue 7, pp 1235–1240 | Cite as

The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films

  • Yuhong Oh
  • Donggi Ahn
  • Seunghoon Nam
  • Byungwoo Park
Original Paper


The electrochemical properties of nanoscale Al2O3-coated LiCoO2 thin films were examined as a function of the coating coverage. Al2O3-coated LiCoO2 films showed enhanced cycle-life performance with increasing degree of coating coverage, which was attributed to the suppression of Co dissolution and F concentration in the electrolyte. Moreover, an Al2O3-coating layer with partial coverage clearly improved the electrochemical properties, even at 60 °C or with a water-contaminated electrolyte. Even though metal-oxide coating on LiCoO2 has been actively investigated, the mechanisms of nanoscale coating have yet to be clearly identified. In this article, surface analysis suggested that the Al2O3-coating layer had transformed to an AlF3 3H2O layer during cycling, which inhibited the generation of HF by scavenging H2O molecules present in the electrolyte.


Li-ion battery LiCoO2 Al2O3 Nanoscale coating H2O scavenge 



This work was supported by the National Research Foundation of Korea, through the Research Center for Energy Conversion and Storage (RCECS, R11-2002-102-00000-0) and the World Class University (WCU, R31-2008-000-10075-0).


  1. 1.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  2. 2.
    Wang H, Jang Y, Huang B, Sadoway DR, Chiang Y (1999) J Electrochem Soc 146:473CrossRefGoogle Scholar
  3. 3.
    Amatucci GG, Tarascon JM, Klein LC (1996) Solid State Ionics 83:167CrossRefGoogle Scholar
  4. 4.
    Venkatrman S, Manthiram A (2003) Chem Mater 15:5003CrossRefGoogle Scholar
  5. 5.
    Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H, Schmidt M (2002) Electrochim Acta 47:4291CrossRefGoogle Scholar
  6. 6.
    Jiang J, Buhrmester T, Eberman KW, Krause LJ, Dahn JR (2005) J Electrochem Soc 152:A19CrossRefGoogle Scholar
  7. 7.
    Li D, Ito A, Kobayakawa K, Sato Y (2007) Electrochim Acta 52:1919CrossRefGoogle Scholar
  8. 8.
    Cho J, Kim YJ, Kim T, Park B (2001) Angew Chem Int Ed 40:3367CrossRefGoogle Scholar
  9. 9.
    Kim YJ, Lee E, Kim H, Cho J, Cho YW, Park B, Oh SM, Yoon JK (2004) J Electrochem Soc 151:A1063CrossRefGoogle Scholar
  10. 10.
    Kim YJ, Kim H, Kim B, Ahn D, Lee J, Kim T, Son D, Cho J, Kim Y, Park B (2003) Chem Mater 15:1505CrossRefGoogle Scholar
  11. 11.
    Cho J, Kim T, Kim C, Lee J, Kim Y, Park B (2005) J Power Sources 146:58CrossRefGoogle Scholar
  12. 12.
    Kim YJ, Cho J, Kim T, Park B (2003) J Electrochem Soc 150:A1723CrossRefGoogle Scholar
  13. 13.
    Chen Z, Dahn JR (2003) Electrochem Solid-State Lett 6:A221CrossRefGoogle Scholar
  14. 14.
    Cho J, Kim Y, Kim B, Lee J, Park B (2003) Angew Chem Int Ed 42:1618CrossRefGoogle Scholar
  15. 15.
    Kim B, Kim C, Ahn D, Moon T, Ahn J, Park Y, Park B (2007) Electrochem Solid-State Lett 10:A32CrossRefGoogle Scholar
  16. 16.
    Ahn D, Kim C, Lee J, Kim B, Park Y, Park B (2007) J Mater Res 22:688CrossRefGoogle Scholar
  17. 17.
    Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872CrossRefGoogle Scholar
  18. 18.
    Cho J, Kim YJ, Park B (2001) J Electrochem Soc 148:A1110CrossRefGoogle Scholar
  19. 19.
    Cho J, Kim YJ, Park B (2000) Chem Mater 12:3788CrossRefGoogle Scholar
  20. 20.
    Kweon H, Park JJ, Seo JW, Kim GB, Jung BH, Lim HS (2004) J Power Sources 126:156CrossRefGoogle Scholar
  21. 21.
    Liu L, Chen L, Huang X, Yang X, Yoon W, Lee HS, McBreen J (2004) J Electrochem Soc 151:A1344CrossRefGoogle Scholar
  22. 22.
    Fey G, Yang HZ, Kumara T, Naik S, Chiang A, Lee DC, Lin JR (2004) J Power Sources 132:172CrossRefGoogle Scholar
  23. 23.
    Thackeray MM, Johnson CS, Kim J, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) Electrochem Comm 5:752CrossRefGoogle Scholar
  24. 24.
    Myung S, Izumi K, Komaba S, Sun Y, Yashiro H, Kumagai N (2005) Chem Mater 17:3695CrossRefGoogle Scholar
  25. 25.
    Myung S, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun Y, Kumagai N (2007) J Phys Chem C 111:4061CrossRefGoogle Scholar
  26. 26.
    Van Landschoot N, Kelder EM, Kooyman PJ, Kwakernaak C, Schoonman J (2004) J Power Sources 138:262CrossRefGoogle Scholar
  27. 27.
    Oh S, Lee JK, Byun D, Cho WI, Cho BW (2004) J Power Sources 132:249CrossRefGoogle Scholar
  28. 28.
    Oh Y, Ahn D, Nam S, Kim C, Lee J, Park B (2008) Electron Mater Lett 4:103Google Scholar
  29. 29.
    Fey G, Chen J, Kumar TP (2005) J Appl Electrochem 35:177CrossRefGoogle Scholar
  30. 30.
    Fey G, Kao HM, Muralidharan P, Kumar TP, Cho YD (2006) J Power Sources 163:135CrossRefGoogle Scholar
  31. 31.
    Markovsky B, Rodkin A, Salitra G, Talyossef Y, Aurbach D, Kim H (2004) J Electrochem Soc 151:A1068CrossRefGoogle Scholar
  32. 32.
    Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397CrossRefGoogle Scholar
  33. 33.
    Kleist W, Haeßner C, Storcheva O, Köhler K (2006) Inorg Chim Acta 359:4851CrossRefGoogle Scholar
  34. 34.
    Krossner M, Scholz G, Stösser R (1997) J Phys Chem A 101:1555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yuhong Oh
    • 1
  • Donggi Ahn
    • 1
  • Seunghoon Nam
    • 1
  • Byungwoo Park
    • 1
  1. 1.Department of Materials Science and Engineering, and Research Center for Energy Conversion and StorageSeoul National UniversitySeoulKorea

Personalised recommendations