Advertisement

Journal of Solid State Electrochemistry

, Volume 14, Issue 7, pp 1235–1240 | Cite as

The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films

  • Yuhong Oh
  • Donggi Ahn
  • Seunghoon Nam
  • Byungwoo Park
Original Paper

Abstract

The electrochemical properties of nanoscale Al2O3-coated LiCoO2 thin films were examined as a function of the coating coverage. Al2O3-coated LiCoO2 films showed enhanced cycle-life performance with increasing degree of coating coverage, which was attributed to the suppression of Co dissolution and F concentration in the electrolyte. Moreover, an Al2O3-coating layer with partial coverage clearly improved the electrochemical properties, even at 60 °C or with a water-contaminated electrolyte. Even though metal-oxide coating on LiCoO2 has been actively investigated, the mechanisms of nanoscale coating have yet to be clearly identified. In this article, surface analysis suggested that the Al2O3-coating layer had transformed to an AlF3 3H2O layer during cycling, which inhibited the generation of HF by scavenging H2O molecules present in the electrolyte.

Keywords

Li-ion battery LiCoO2 Al2O3 Nanoscale coating H2O scavenge 

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea, through the Research Center for Energy Conversion and Storage (RCECS, R11-2002-102-00000-0) and the World Class University (WCU, R31-2008-000-10075-0).

References

  1. 1.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  2. 2.
    Wang H, Jang Y, Huang B, Sadoway DR, Chiang Y (1999) J Electrochem Soc 146:473CrossRefGoogle Scholar
  3. 3.
    Amatucci GG, Tarascon JM, Klein LC (1996) Solid State Ionics 83:167CrossRefGoogle Scholar
  4. 4.
    Venkatrman S, Manthiram A (2003) Chem Mater 15:5003CrossRefGoogle Scholar
  5. 5.
    Aurbach D, Markovsky B, Rodkin A, Levi E, Cohen YS, Kim H, Schmidt M (2002) Electrochim Acta 47:4291CrossRefGoogle Scholar
  6. 6.
    Jiang J, Buhrmester T, Eberman KW, Krause LJ, Dahn JR (2005) J Electrochem Soc 152:A19CrossRefGoogle Scholar
  7. 7.
    Li D, Ito A, Kobayakawa K, Sato Y (2007) Electrochim Acta 52:1919CrossRefGoogle Scholar
  8. 8.
    Cho J, Kim YJ, Kim T, Park B (2001) Angew Chem Int Ed 40:3367CrossRefGoogle Scholar
  9. 9.
    Kim YJ, Lee E, Kim H, Cho J, Cho YW, Park B, Oh SM, Yoon JK (2004) J Electrochem Soc 151:A1063CrossRefGoogle Scholar
  10. 10.
    Kim YJ, Kim H, Kim B, Ahn D, Lee J, Kim T, Son D, Cho J, Kim Y, Park B (2003) Chem Mater 15:1505CrossRefGoogle Scholar
  11. 11.
    Cho J, Kim T, Kim C, Lee J, Kim Y, Park B (2005) J Power Sources 146:58CrossRefGoogle Scholar
  12. 12.
    Kim YJ, Cho J, Kim T, Park B (2003) J Electrochem Soc 150:A1723CrossRefGoogle Scholar
  13. 13.
    Chen Z, Dahn JR (2003) Electrochem Solid-State Lett 6:A221CrossRefGoogle Scholar
  14. 14.
    Cho J, Kim Y, Kim B, Lee J, Park B (2003) Angew Chem Int Ed 42:1618CrossRefGoogle Scholar
  15. 15.
    Kim B, Kim C, Ahn D, Moon T, Ahn J, Park Y, Park B (2007) Electrochem Solid-State Lett 10:A32CrossRefGoogle Scholar
  16. 16.
    Ahn D, Kim C, Lee J, Kim B, Park Y, Park B (2007) J Mater Res 22:688CrossRefGoogle Scholar
  17. 17.
    Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872CrossRefGoogle Scholar
  18. 18.
    Cho J, Kim YJ, Park B (2001) J Electrochem Soc 148:A1110CrossRefGoogle Scholar
  19. 19.
    Cho J, Kim YJ, Park B (2000) Chem Mater 12:3788CrossRefGoogle Scholar
  20. 20.
    Kweon H, Park JJ, Seo JW, Kim GB, Jung BH, Lim HS (2004) J Power Sources 126:156CrossRefGoogle Scholar
  21. 21.
    Liu L, Chen L, Huang X, Yang X, Yoon W, Lee HS, McBreen J (2004) J Electrochem Soc 151:A1344CrossRefGoogle Scholar
  22. 22.
    Fey G, Yang HZ, Kumara T, Naik S, Chiang A, Lee DC, Lin JR (2004) J Power Sources 132:172CrossRefGoogle Scholar
  23. 23.
    Thackeray MM, Johnson CS, Kim J, Lauzze KC, Vaughey JT, Dietz N, Abraham D, Hackney SA, Zeltner W, Anderson MA (2003) Electrochem Comm 5:752CrossRefGoogle Scholar
  24. 24.
    Myung S, Izumi K, Komaba S, Sun Y, Yashiro H, Kumagai N (2005) Chem Mater 17:3695CrossRefGoogle Scholar
  25. 25.
    Myung S, Izumi K, Komaba S, Yashiro H, Bang HJ, Sun Y, Kumagai N (2007) J Phys Chem C 111:4061CrossRefGoogle Scholar
  26. 26.
    Van Landschoot N, Kelder EM, Kooyman PJ, Kwakernaak C, Schoonman J (2004) J Power Sources 138:262CrossRefGoogle Scholar
  27. 27.
    Oh S, Lee JK, Byun D, Cho WI, Cho BW (2004) J Power Sources 132:249CrossRefGoogle Scholar
  28. 28.
    Oh Y, Ahn D, Nam S, Kim C, Lee J, Park B (2008) Electron Mater Lett 4:103Google Scholar
  29. 29.
    Fey G, Chen J, Kumar TP (2005) J Appl Electrochem 35:177CrossRefGoogle Scholar
  30. 30.
    Fey G, Kao HM, Muralidharan P, Kumar TP, Cho YD (2006) J Power Sources 163:135CrossRefGoogle Scholar
  31. 31.
    Markovsky B, Rodkin A, Salitra G, Talyossef Y, Aurbach D, Kim H (2004) J Electrochem Soc 151:A1068CrossRefGoogle Scholar
  32. 32.
    Edström K, Gustafsson T, Thomas JO (2004) Electrochim Acta 50:397CrossRefGoogle Scholar
  33. 33.
    Kleist W, Haeßner C, Storcheva O, Köhler K (2006) Inorg Chim Acta 359:4851CrossRefGoogle Scholar
  34. 34.
    Krossner M, Scholz G, Stösser R (1997) J Phys Chem A 101:1555CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Yuhong Oh
    • 1
  • Donggi Ahn
    • 1
  • Seunghoon Nam
    • 1
  • Byungwoo Park
    • 1
  1. 1.Department of Materials Science and Engineering, and Research Center for Energy Conversion and StorageSeoul National UniversitySeoulKorea

Personalised recommendations