Journal of Solid State Electrochemistry

, Volume 14, Issue 7, pp 1293–1301 | Cite as

Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior

Original Paper

Abstract

Manganese dioxide nanostructures have been synthesized by hydrothermal synthetical method. The crystallographic structure, morphology, and electrochemical properties of obtained MnO2 are examined by XRD, TEM, cyclic voltammetry, and galvanostatic charge–discharge tests. The results showed that the electrochemical properties of MnO2 were strongly affected by the crystallographic structure and morphology. The controlling crystallographic structure of MnO2 can be obtained by altering the molar ratio of KMnO4/MnSO4. The morphology was affected by the hydrothermal dwell time and temperature. The optimal synthetic conditions are as follows: the initial molar ratio of KMnO4/MnSO4 is 3:1, the reaction lasts 2 h at 120 °C, and the filling factor is 90%. In these prepared conditions, the MnO2 with the maximum specific capacitance of 259 F g−1 can be obtained. Prepared δ-MnO2 has a good layer structure and exhibits nanoflower morphology. The XRD studies show that the crystalline degree of this sample is lower, and the average grain size is about 8.3 nm. These results indicate that the product may have potential applications in areas such as electrode materials of supercapacitor and other new storing energy system.

Keywords

Manganese dioxide Supercapacitor Hydrothermal synthesis Crystallographic structure 

References

  1. 1.
    Chu A, Braatz P (2002) J Power Sources 112:236CrossRefGoogle Scholar
  2. 2.
    Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946CrossRefGoogle Scholar
  3. 3.
    Xu C, Li B, Du H, Kang F, Zeng Y (2008) J Power Sources 180:664CrossRefGoogle Scholar
  4. 4.
    Subramanian V, Zhu H, Wei B (2008) Chem Phys Lett 453:242CrossRefGoogle Scholar
  5. 5.
    Yuan A, Wang X, Wang Y, Hu J (2009) Electrochim Acta 54:1021CrossRefGoogle Scholar
  6. 6.
    Zolfaghari A, Ataherian F, Ghaemi M, Gholami A (2007) Electrochim Acta 52:2806CrossRefGoogle Scholar
  7. 7.
    Yan D, Yan P, Cheng S, Chen J, Zhuo R, Feng J, Zhang G (2009) Cryst Growth Des 1:218CrossRefGoogle Scholar
  8. 8.
    Chen X, Li X, Jiang Y, Shi C, Li X (2005) Solid State Commun 136:94CrossRefGoogle Scholar
  9. 9.
    Subramanian V, Zhu H, Vojtal R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207CrossRefGoogle Scholar
  10. 10.
    Ding Y, Shen X, Gomez S, Luo H, Aindow M, Suib SL (2006) Adv Funct Mater 16:549CrossRefGoogle Scholar
  11. 11.
    Xu M, Kong L, Zhou W, Li H (2007) J Phys Chem C 111:19141CrossRefGoogle Scholar
  12. 12.
    Devaraj S, Munichandraiah N (2008) J Phys Chem C 112:4406CrossRefGoogle Scholar
  13. 13.
    Athoul L, Moser F, Dugas R, Crosnier O, Blanger D, Brousse T (2008) J Phys Chem C 112:7270CrossRefGoogle Scholar
  14. 14.
    Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2009) J Phys Chem C 113:54CrossRefGoogle Scholar
  15. 15.
    Chen R, Zavalij P, Whittingham MS (1996) Chem Meter 8:1275CrossRefGoogle Scholar
  16. 16.
    Chang JK, Huang CH, Lee MT, Tsai WT, Deng MJ, Sun IW (2009) Electrochim. Acta 54:3278CrossRefGoogle Scholar
  17. 17.
    Wang X, Li YD (2003) Chem Eur 9:300CrossRefGoogle Scholar
  18. 18.
    Beaudrouet E, Salle ALGL, Guyomard D (2009) Electrochim Acta 54:1240CrossRefGoogle Scholar
  19. 19.
    Wei W, Cui X, Chen W, Ivey DG (2009) J Power Sources 186:543CrossRefGoogle Scholar
  20. 20.
    Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Electrochim Acta 53:4607CrossRefGoogle Scholar
  21. 21.
    Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444CrossRefGoogle Scholar
  22. 22.
    Kuo SL, Wu NL (2006) J Electrochem Soc 153:A1317CrossRefGoogle Scholar
  23. 23.
    Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184CrossRefGoogle Scholar
  24. 24.
    Ma R, Bando Y, Zhang L, Sasaki T (2004) Adv Mater 16:918CrossRefGoogle Scholar
  25. 25.
    Reddy RN, Reddy RG (2003) J Power Sources 124:330CrossRefGoogle Scholar
  26. 26.
    Kijima N, Yasuda H, Sato T, Yoshimura Y (2001) J Solid State Chem 159:94CrossRefGoogle Scholar
  27. 27.
    Xiao TD, Strutt PR, Benaissa M, Chen H, Kear BH (1998) Nanostruct Mater 10:1051CrossRefGoogle Scholar
  28. 28.
    DeGuzman RN, Shen YF, Neth EJ, Suib SL, O’Young CL, Levine S, Newsam JM (1994) Chem Mater 6:815CrossRefGoogle Scholar
  29. 29.
    Luo J, Suib SL (1997) J Phys Chem B 101:10403CrossRefGoogle Scholar
  30. 30.
    Ghodbane O, Pascal JL, Favier F (2009) Appl Mater Interfaces 1(5):1130CrossRefGoogle Scholar
  31. 31.
    Tian N, Zhou ZY, Sun SG (2008) J Phys Chem C 112:19801CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Applied Chemistry, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations