Advertisement

Journal of Solid State Electrochemistry

, Volume 14, Issue 7, pp 1125–1144 | Cite as

Cathode materials for solid oxide fuel cells: a review

  • Chunwen Sun
  • Rob Hui
  • Justin Roller
Review Paper

Abstract

The composition and microstructure of cathode materials has a large impact on the performance of solid oxide fuel cells (SOFCs). Rational design of materials composition through controlled oxygen nonstoichiometry and defect aspects can enhance the ionic and electronic conductivities as well as the catalytic properties for oxygen reduction in the cathode. Cell performance can be further improved through microstructure optimization to extend the triple-phase boundaries. A major degradation mechanism in SOFCs is poisoning of the cathode by chromium species when chromium-containing alloys are used as the interconnect material. This article reviews recent developments in SOFC cathodes with a principal emphasis on the choice of materials. In addition, the reaction mechanism of oxygen reduction is also addressed. The development of Cr-tolerant cathodes for intermediate temperature solid oxide fuel cells, and a possible mechanism of Cr deposition at cathodes are briefly reviewed as well. Finally, this review will be concluded with some perspectives on the future of research directions in this area.

Keywords

Solid oxide fuel cells Cathode materials Microstructure Reaction mechanism Chromium poisoning 

Notes

Acknowledgments

The authors acknowledge the financial support from the National Research Council Canada-Institute for Fuel Cell Innovation. We would also like to thank the referees for their constructive comments and suggestions on an earlier version of the manuscript.

References

  1. 1.
    Sun CW, Stimming U (2007) J Power Sources 171:247Google Scholar
  2. 2.
    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design, and applications. Elsevier, Oxford, pp 1–22Google Scholar
  3. 3.
    Mogensen M, Kammer K (2003) Annu Rev Mater Res 33:321Google Scholar
  4. 4.
    Yamamoto O (2000) Electrochim Acta 45:2423Google Scholar
  5. 5.
    Yahiro H, Eguchi Y, Eguchi K, Arai H (1988) J Appl Electrochem 18:527Google Scholar
  6. 6.
    Mogensen M, Lindegaard T, Hansen UR, Mogensen G (1994) J Electrochem Soc 141:2122Google Scholar
  7. 7.
    Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Solid State Ionics 52:165Google Scholar
  8. 8.
    Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801Google Scholar
  9. 9.
    Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663Google Scholar
  10. 10.
    Vasylechko L, Vashook V, Savytskii D, Senyshyn A, Niewa R, Knapp M, Ullmann H, Berkowski M, Matkovskii A, Bismayer U (2003) J Solid State Chem 172:396Google Scholar
  11. 11.
    Gorte RJ, Vohs JM (2003) J Catal 216:477Google Scholar
  12. 12.
    Alder SB (2004) Chem Rev 104:4791Google Scholar
  13. 13.
    Antoni L (2004) Mater Sci Forum 461–464:1073Google Scholar
  14. 14.
    Ivers-Tiffee E, Weber A, Schichlein H (2003) In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 2. Wiley, Chichester, p 587Google Scholar
  15. 15.
    Gellings PJ, Bouwmeester HJM (2000) Catal Today 58:1Google Scholar
  16. 16.
    Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741Google Scholar
  17. 17.
    Jørgensen MJ, Mogensen M (2001) J Electrochem Soc 148:A433Google Scholar
  18. 18.
    Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Solid State Ionics 177:1071Google Scholar
  19. 19.
    Serra JM, Vert VB, Betz M, Haanappel VAC, Meulenberg WA, Tiet F (2008) J Electrochem Soc 155:B207Google Scholar
  20. 20.
    Fleig J (2003) Annu Rev Mater Res 33:361Google Scholar
  21. 21.
    Endo A, Fukunaga H, Wen C, Yamada K (2000) Solid State Ionics 135:353Google Scholar
  22. 22.
    Ioroi TH, Uchimoto TY, Ogumi Z, Takehara Z (1998) J Electrochem Soc 145:1999Google Scholar
  23. 23.
    Brichzin V, Fleig J, Habermeier HU, Maier J (2002) Solid State Ionics 152–153:499Google Scholar
  24. 24.
    Koep E, Mebane DS, Das R, Compson C, Liu ML (2005) Electrochem Solid-State Lett 8:A592Google Scholar
  25. 25.
    Jiang SP (2002) Solid State Ionics 146:1Google Scholar
  26. 26.
    Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554Google Scholar
  27. 27.
    Steele BCH, Hori KM, Uchino S (2000) Solid State Ionics 135:445Google Scholar
  28. 28.
    Burriel M, Garcia G, Santiso J, Kilner JA, Chater RJ, Skinner SJ (2008) J Mater Chem 18:416Google Scholar
  29. 29.
    De Souza RA, Kilner JA, Walker JF (2000) Mater Lett 43:43Google Scholar
  30. 30.
    Colomer MT, Steele BCH, Kilner JA (2002) Solid State Ionics 147:41Google Scholar
  31. 31.
    Endo A, Wada S, Wen CJ, Komiyama H, Yamada K (1998) J Electrochem Soc 145:L35–L37Google Scholar
  32. 32.
    Backhaus-Ricoult M, Adib K, St. Clair T, Luerssen B, Gregoratti L, Barinov A (2008) Solid State Ionics 179:891Google Scholar
  33. 33.
    La O’ GJ, Savinell RF, Shao-Horn Y (2009) J Electrochem Soc 156:B771Google Scholar
  34. 34.
    Woo LY, Glass RS, Gorte RJ, Orme CA, Nelson AJ (2009) J Electrochem Soc 156:B602Google Scholar
  35. 35.
    Jiang SP, Love JG, Zhang JP, Hoang M, Ramprakash Y, Hughes AE, Badwal SPS (1999) Solid State Ionics 121:1Google Scholar
  36. 36.
    Wang W, Jiang SP (2006) Solid State Ionics 177:1361Google Scholar
  37. 37.
    McIntosh S, Adler SB, Vohs JM, Gorte RJ (2004) Electrochem Solid-State Lett 7:A111Google Scholar
  38. 38.
    Lee YK, Kim JY, Moon KI, HS PJW, Jacobson CP, Visco SJ (2003) J Power Sources 115:219Google Scholar
  39. 39.
    Jiang SP (2007) J Solid State Electrochem 11:93Google Scholar
  40. 40.
    Vohs JM, Gorte RJ (2009) Adv Mater 21:943Google Scholar
  41. 41.
    Lu X, Faguy PW, Liu ML (2002) J Electrochem Soc 149:A1293Google Scholar
  42. 42.
    Horita T, Yamaji K, Ishikawa M, Sakai N, Yokokawa H, Kawada T, Kato T (1998) J Electrochem Soc 145:3196Google Scholar
  43. 43.
    Wang JH, Liu ML, Lin MC (2006) Solid State Ionics 177:939Google Scholar
  44. 44.
    Choi YM, Lin MC, Liu ML (2007) Angew Chem Int Ed 46:7214Google Scholar
  45. 45.
    Kotomin EA, Mastrikov YA, Heifets E, Maier J (2008) Phys Chem Chem Phys 10:4644Google Scholar
  46. 46.
    Skinner SJ (2001) Int J Inorg Mater 3:113Google Scholar
  47. 47.
    Boukamp BA (2003) Nat Mater 2:294Google Scholar
  48. 48.
    Tao SW, Irvine JTS (2003) Nat Mater 2:320Google Scholar
  49. 49.
    Shannon RD (1976) Acta Cryst A 32:751Google Scholar
  50. 50.
    Nomura K, Tanase S (1997) Solid State Ionics 98:229Google Scholar
  51. 51.
    McEvoy AJ (2000) Solid State Ionics 135:331Google Scholar
  52. 52.
    Van RJAM, Cordfunke EHP (1991) J Solid State Chem 93:212Google Scholar
  53. 53.
    Mizusaki J (1992) Solid State Ionics 52:79Google Scholar
  54. 54.
    Trofimenko NE, Ullmann H (2000) J Eur Ceram Soc 20:1241Google Scholar
  55. 55.
    Ullmann H, Trofimenko N (1999) Solid State Ionics 119:1Google Scholar
  56. 56.
    Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79Google Scholar
  57. 57.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1992) Solid State Ionics 52:43Google Scholar
  58. 58.
    Yokokawa H, Kawada T, Dokiya M (1989) J Am Ceram Soc 72:152Google Scholar
  59. 59.
    Cheng J, Navrotsky A (2005) J Mater Res 20:191Google Scholar
  60. 60.
    Tanasescu S, Totir ND, Neiner D (2001) J Optoelectronics Adv Mater 3:101Google Scholar
  61. 61.
    Tanasescu S, Totir ND, Marchidan DI (1998) Electrochimi Acta 43:1675Google Scholar
  62. 62.
    Tanasescu S, Totir ND, Marchidan DI (1999) Solid State Ionics 119:311Google Scholar
  63. 63.
    Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163Google Scholar
  64. 64.
    Miyoshi S, Hong J, Yashiro K, Kaimai A, Nigara Y, Kawamura K, Kawada T, Mizusaki J (2002) Solid State Ionics 154–155:257Google Scholar
  65. 65.
    Kuo JH, Anderson HU, Sparlin DM (1989) J Solid State Chem 83:52Google Scholar
  66. 66.
    Anderson HU (1992) Solid State Ionics 52:33Google Scholar
  67. 67.
    Nowotny J, Rekas M (1988) J Am Ceram Soc 81:67CrossRefGoogle Scholar
  68. 68.
    Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161Google Scholar
  69. 69.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, AmsterdamGoogle Scholar
  70. 70.
    Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ionics 22:241Google Scholar
  71. 71.
    Kenjo T, Nishiya M (1992) Solid State Ionics 57:295Google Scholar
  72. 72.
    Clausen C, Bagger C, Bilde-Sørensen JB, Horsewell A (1994) Solid State Ionics 70–71:59Google Scholar
  73. 73.
    Stochniol G, Syskakis E, Naoumidis A (1995) J Amer Ceram Soc 78:929Google Scholar
  74. 74.
    Setoguchi T, Inoue T, Takebe H, Eguchi K, Morinaga K, Arai H (1990) Solid State Ionics 37:217Google Scholar
  75. 75.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1990) Solid State Ionics 40–41:398Google Scholar
  76. 76.
    van Roosmalen JAM, Corfdfunke EHP (1992) Solid State Ionics 52:303Google Scholar
  77. 77.
    Schäfer W, Koch A, Herold-Schmidt U, Stolten D (1996) Solid State Ionics 86–88:1235Google Scholar
  78. 78.
    Taimatsu H, Wada K, Kaneko H, Yamamura H (1992) J Am Ceram Soc 75:401Google Scholar
  79. 79.
    Kawada T, Sakai N, Yokokawa H, Dokiya M, Anzai I (1992) Solid State Ionics 50:189Google Scholar
  80. 80.
    Mitterdorfer A, Gauckler LJ (1998) Solid State Ionics 111:185Google Scholar
  81. 81.
    Ishihara T, Kudo T, Matsuda H, Takita Y (1994) J Am Ceram Soc 77:1682Google Scholar
  82. 82.
    Wen TL, Tu HY, Xu ZH, Yamamoto O (1999) Solid State Ionics 121:25Google Scholar
  83. 83.
    Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y (1999) Solid State Ionics 118:187Google Scholar
  84. 84.
    Kostogloudis GCh, Ftikos Ch (1999) J Eur Ceram Soc 19:497Google Scholar
  85. 85.
    Kostogloudis GCh, Vasilakos N, Ftikos Ch (1997) J Eur Ceram Soc 17:1513Google Scholar
  86. 86.
    Rim HR, Jeung SK, Jung E, Lee JS (1998) Mater Chem Phys 52:54Google Scholar
  87. 87.
    Yue XL, Yan AY, Zhang M, Liu L, Dong YL, Cheng MJ (2008) J Power Sources 185:691Google Scholar
  88. 88.
    Hashimoto S, Iwahara H (1999) J Electroceram 4:225Google Scholar
  89. 89.
    Gu H, Chen H, Gao L, Zheng Y, Zhu X, Guo L (2008) Int J Hydrogen Energy 33:4681Google Scholar
  90. 90.
    Kojima I, Adachi H, Yasumori I (1983) Surf Sci 130:50Google Scholar
  91. 91.
    Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P (1995) Solid State Ionics 80:189Google Scholar
  92. 92.
    Takeda Y, Kanno R, Noda M, Yamamoto O (1986) Bull Inst Chem Res 64:157Google Scholar
  93. 93.
    Weber A, Ivers-Tiffee E (2004) J Power Sources 127:273Google Scholar
  94. 94.
    Riza F, Ftikos Ch, Tietz F, Fischer WJ (2001) J Eur Ceram Soc 21:769Google Scholar
  95. 95.
    Huang K, Lee HY, Goodenough JB (1998) J Electrochem Soc 145:3220Google Scholar
  96. 96.
    Lee KT, Manthiram A (2006) J Electrochem Soc 153:A794Google Scholar
  97. 97.
    Yasumoto K, Inagaki Y, Shiono M, Dokiya M (2002) Solid State Ionics 148:545Google Scholar
  98. 98.
    Ishihara T, Kudo T, Matsuda H, Takita Y (1995) J Electrochem Soc 142:1519Google Scholar
  99. 99.
    Zhu CJ, Liu XM, Xu D, Yan DT, Wang DY, Su WH (2008) Solid State Ionics 179:1470Google Scholar
  100. 100.
    Chen WX, Wen TL, Nie HW, Zheng R (2003) Mater Res Bull 38:1319Google Scholar
  101. 101.
    Fukunaga H, Koyama M, Takahashi N, Wen C, Yamada K (2000) Solid State Ionics 132:279Google Scholar
  102. 102.
    Ishihara T, Honda M, Shibayama T, Minami H, Nishiguchi H, Takita V (1998) J Electrochem Soc 145:3177Google Scholar
  103. 103.
    Tu HY, Takeda Y, Imanishi N, Yamamoto O (1997) Solid State Ionics 100:283Google Scholar
  104. 104.
    Xia CR, Rauch W, Chen FL, Liu ML (2002) Solid State Ionics 149:11Google Scholar
  105. 105.
    Shiono M, Kobayashi K, Nguyen TL, Hosoda K, Kato T, Ota K, Dokiya M (2004) Solid State Ionics 170:1Google Scholar
  106. 106.
    Rossignol C, Ralph JM, Bae JM, Vaughey JT (2004) Solid State Ionics 175:59Google Scholar
  107. 107.
    Ralph JM, Rossignol C, Kumar R (2003) J Electrochem Soc 150:A1518Google Scholar
  108. 108.
    Simner SP, Bonnett JF, Canfield NL, Meinhardt KD, Sprenkle VL, Stevenson JW (2002) Electrochem Solid-state Lett 5:A173Google Scholar
  109. 109.
    Simner SP, Bonnett JF, Canfield NL, Meinhardt KD, Shelton JP, Sprenkle VL, Stevenson JW (2003) J Power Sources 113:1Google Scholar
  110. 110.
    Zhou XD, Anderson HU (2005) SOFC-IX: solid oxide fuel cells IX, electrochemical society proceedings. Quebec PQ, Canada, pp 1479–1486Google Scholar
  111. 111.
    Bongio EV, Black H, Raszewski FC, Edwards D, McConville CJ, Amarakoon VRW (2005) J Electroceram 14:193Google Scholar
  112. 112.
    Simner SP, Anderson MD, Pederson LR, Stevenson JW (2005) J Electrochem Soc 152:A1851Google Scholar
  113. 113.
    Coffey G, Hardy J, Marina O, Pederson L, Rieke P, Thomsen E (2004) Solid State Ionics 175:73Google Scholar
  114. 114.
    Simner S, Anderson M, Bonnett J, Stevenson J (2004) Solid State Ionics 175:79Google Scholar
  115. 115.
    Yokokawa H, Sakai H, Horita T, Yamaji K, Brito ME, Kishimoto H (2008) J Alloys Compd 452:41Google Scholar
  116. 116.
    Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stöver D (2005) Solid State Ionics 176:1341Google Scholar
  117. 117.
    Mai A, Haanappel VAC, Tietz F, Stöver D (2005) Solid oxide fuel cells IX (SOFC IX). In: Singhal SC, Mizusaki J (eds) The electrochemical society. Pennington, USA, pp 1627–1635Google Scholar
  118. 118.
    Martínez-Amesti A, Larrañaga A, Rodríguez-Martínez LM, Aguayo AT, Pizarro JL, Nó ML, Laresgoiti A, Arriortua MI (2008) J Power Sources 185:401Google Scholar
  119. 119.
    Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1039Google Scholar
  120. 120.
    Anderson MD, Stevenson JW, Simner SP (2004) J Power Sources 129:188Google Scholar
  121. 121.
    Simner SP, Schelton JP, Anderson MD, Stevenson JW (2003) Solid State Ionics 161:11Google Scholar
  122. 122.
    Bebelis S, Kournoutis V, Mai A, Tietz F (2008) Solid State Ionics 179:1080Google Scholar
  123. 123.
    Dusastre V, Kilner JA (1999) Solid State Ionics 126:163Google Scholar
  124. 124.
    Steele BCH (1996) Solid State Ionics 86–88:1223Google Scholar
  125. 125.
    Kindermann L, Dos D, Nickel H, Hilpert K, Appel CC, Poulsan FW (1997) J Electrochem Soc 144:717Google Scholar
  126. 126.
    Steele BCH (2000) Solid State Ionics 129:95Google Scholar
  127. 127.
    Kostogloudis GCh, Ftikos Ch (1999) Solid State Ionics 126:143Google Scholar
  128. 128.
    Haanappel VAC, Mertens J, Mai A (2006) J Fuel Cell Sci Technol 3:263Google Scholar
  129. 129.
    Uhlenbruck S, Moskalewicz T, Jordan N, Penkalla HJ, Buchkremer HP (2009) Solid State Ionics 180:418Google Scholar
  130. 130.
    Mai A, Becker M, Assenmacher W, Tietz F, Hathiramani D, Ivers-Tiffée E, Stöver D, Mader W (2006) Solid State Ionics 177:1965Google Scholar
  131. 131.
    Yokokawa H, Tu HY, Iwanschitz B, Mai A (2008) J Power Sources 182:400Google Scholar
  132. 132.
    Tietz F, Fu QX, Haanappel VAC, Mai A, Menzler NH, Uhlenbruck S (2007) Int J Appl Ceram Technol 4:436Google Scholar
  133. 133.
    Tietz F, Mai A, Stöver D (2008) Solid State Ionics 179:1509Google Scholar
  134. 134.
    Tietz F, Arul Raj I, Zahid M, Stöver D (2006) Solid State Ionics 177:1753Google Scholar
  135. 135.
    Meng XW, Lv SQ, Ji Y, Tao W, Zhang YL (2008) J Power Sources 183:581Google Scholar
  136. 136.
    Shao ZP, Haile SM (2004) Nature 431:170Google Scholar
  137. 137.
    Wei B, Lv Z, Huang XQ, Miao JP, Sha XQ, Xin XS, Su WH (2006) J Eur Ceram Soc 26:2827Google Scholar
  138. 138.
    Kharton VV, Yaremchenko AA, Kovalevsky AV, Viskup AP, Naumovich EN, Kerko PF (1999) J Membrane Sci 163:307Google Scholar
  139. 139.
    Tofan C, Klvana D, Kirchnerova J (2002) Appl Catal B 36:311Google Scholar
  140. 140.
    Gharbage B, Baker RT, Marques FMB (1998) J Mater Sci Lett 17:75Google Scholar
  141. 141.
    Khromushin IV, Aksenova TI, Zhotabaev ZhR (2003) Solid State Ionics 162–163:37Google Scholar
  142. 142.
    Hybbert DB (1993) In: Tejuca LG, Fierro JLG (eds) Properties and applications of perovskite-type oxides. Marcel Dekker, New York, pp 325–342Google Scholar
  143. 143.
    Carolan MF, Dyer PN, LaBar JM, Thorogood RM (1993) US Patent 5(240):473Google Scholar
  144. 144.
    Xia C, Lang Y, Meng G (2004) Fuel Cells 4:41Google Scholar
  145. 145.
    Yan AY, Cheng MJ, Dong YL, Yang WS, Maragou V, Song SQ, Tsiakaras P (2006) Appl Catal B 66:64Google Scholar
  146. 146.
    Zinkevich M, Aldinger F (2004) J Alloys Compd 375:147Google Scholar
  147. 147.
    Tsipis EV, Kiselev EA, Kolotygin VA, Waerenborgh JC, Cherepanov VA, Kharton VV (2008) Solid State Ionics 179:2170Google Scholar
  148. 148.
    Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 124:281Google Scholar
  149. 149.
    Chiba R, Yoshimura F, Sakurai Y (2002) Solid State Ionics 152–153:575Google Scholar
  150. 150.
    Orui H, Watanabe K, Chiba R, Arakawa M (2004) J Electrochem Soc 151:A1412Google Scholar
  151. 151.
    Komatsu T, Arai H, Chiba R, Nozawa K, Arakawa M, Sato K (2006) Electrochem Solid-State Lett 9:A9Google Scholar
  152. 152.
    Komatsu T, Arai H, Chiba R, Nozawa K, Arakawa M, Sato K (2007) J Electrochem Soc 154:B379Google Scholar
  153. 153.
    Chiba R, Orui H, Komatsu T, Tabata Y, Nozawa K, Arakawa M, Sato K, Arai H (2008) J Electrochem Soc 155:B575Google Scholar
  154. 154.
    Kharton VV, Viskup AP, Marozau IP, Naumovich EN (2003) Mater Lett 57:3017Google Scholar
  155. 155.
    Tietz F, Raj IA, Zahid M, Mai A, Stöver D (2007) Prog Solid State Chem 35:539Google Scholar
  156. 156.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mater Res Bull 23:51Google Scholar
  157. 157.
    Patrakeev MV, Bahteeva JA, Mitberg EB, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (2003) J Solid State Chem 172:219Google Scholar
  158. 158.
    Kindermann L, Poulsen FW, Larsen PH, Nickel H, Hilpert K (1998) In: Stevens P (ed), Proc. 3rd Eur. Forum on SOFC, Switzerland 2:123–132Google Scholar
  159. 159.
    Piao JH, Sun KN, Zhang NQ, Chen XB, Xu S, Zhou DR (2007) J Power Sources 172:633Google Scholar
  160. 160.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:259Google Scholar
  161. 161.
    Petric A, Huang P, Tietz F (2000) Solid State Ionics 135:719Google Scholar
  162. 162.
    Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Solid State Ionics 48:207Google Scholar
  163. 163.
    Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273Google Scholar
  164. 164.
    Naumovich EN, Patrakeev MV, Kharton VV, Yaremechenko AA, Logvinovich DI, Marques FMB (2005) Solid State Sci 7:1353Google Scholar
  165. 165.
    Munnings CN, Skinner SJ, Amow G, Whitfiels PS, Davidson IJ (2005) Solid State Ionics 176:1895Google Scholar
  166. 166.
    Vashook VV, Ullmann H, Olshevskaya OP, Kulik VP, Lukashevich VE, Kokhanovskij LV (2000) Solid State Ionics 138:99Google Scholar
  167. 167.
    Al Daroukh M, Vashook VV, Ullmann H, Tietz F, Arual Raj I (2003) Solid State Ionics 158:141Google Scholar
  168. 168.
    Skinner SJ, Kilner JA (2000) Solid State Ionics 135:709Google Scholar
  169. 169.
    Zhao F, Wang XF, Wang ZY, Peng RR, Xia CR (2008) Solid State Ionics 179:1450Google Scholar
  170. 170.
    Aguadero A, Alonso JA, Esudero MJ, Daza L (2008) Solid State Ionics 179:393Google Scholar
  171. 171.
    Jin C, Liu J (2009) J Alloys Compd 474:573Google Scholar
  172. 172.
    Xia CR, Liu ML (2002) Adv Mater 14:521Google Scholar
  173. 173.
    Wang SR, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Solid State Ionics 146:203Google Scholar
  174. 174.
    Liu Y, Mori M, Funahashi Y, Hirano A (2007) Electrochem Commun 9:1918Google Scholar
  175. 175.
    Sakito Y, Hirano A, Imanishi N, Takeda Y, Yamamoto O, Liu Y (2008) J Power Sources 182:476Google Scholar
  176. 176.
    Wang LS, Barnett SA (1995) Solid State Ionics 76:103Google Scholar
  177. 177.
    Sahibzada M, Benson SJ, Rudkin RA, Kilner JA (1995) Solid State Ionics 113–115:285Google Scholar
  178. 178.
    Haanappel VAC, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Röwekamp B, Tropartz C, Tietz F (2004) J. Power Sources 130:119Google Scholar
  179. 179.
    Sun CW, Xie Z, Xia CR, Li H, Chen LQ (2006) Electrochem Commun 8:833Google Scholar
  180. 180.
    Fukui T, Murata K, Ohara S, Abe H, Naito M, Nogi K (2004) J Power Sources 125:17Google Scholar
  181. 181.
    Abe H, Murata K, Fukui T, Moon WJ, Kaneko K, Naito M (2006) Thin Solid Films 496:49Google Scholar
  182. 182.
    Tanner CW, Fung KZ, Virkar AV (1997) J Electrochem Soc 144:21Google Scholar
  183. 183.
    Liu Y, Zha SW, Liu ML (2004) Adv Mater 16:256Google Scholar
  184. 184.
    Mamak M, Metraux GS, Petrov S, Coombs N, Ozin GA, Green MA (2003) J Am Chem Soc 125:5161Google Scholar
  185. 185.
    Leng YJ, Chan SH, Liu QL (2008) Int J Hydrogen Energy 33:3808Google Scholar
  186. 186.
    Antonietti M, Ozin GA (2004) Chem Eur J 10:28Google Scholar
  187. 187.
    Jiang SP (2006) Mater Sci Eng A 418:199Google Scholar
  188. 188.
    Huang Y, Vohs JM, Gorte RJ (2006) J Electrochem Soc 153:A951Google Scholar
  189. 189.
    Sholklapper TZ, Kurokawa H, Jacobson CP, Visco SJ, De Jonghe LC (2007) Nano Lett 7:2136Google Scholar
  190. 190.
    Huang KQ, Hou PY, Goodenough JB (2000) Solid State Ionics 129:237Google Scholar
  191. 191.
    Yang Z, Weil KS, Paxton DM, Stevenson JW (2003) J Electrochem Soc 150:A1188Google Scholar
  192. 192.
    Graham HC, Davis HH (1971) J Am Ceram Soc 54:89Google Scholar
  193. 193.
    Hilpert K, Das D, Miller M, Peck DH, Weiβ R (1996) J Electrochem Soc 143:3642Google Scholar
  194. 194.
    Konysheva E, Penkalla H, Wessel E, Mertens J, Seeling U, Singheiser L, Hilpert K (2006) J Electrochem Soc 153:A765Google Scholar
  195. 195.
    Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Solid State Ionics 99:297Google Scholar
  196. 196.
    Paulson SC, Birss VI (2004) J Electrochem Soc 151:A1961Google Scholar
  197. 197.
    Jiang SP, Zhang S, Zhen YD (2006) J Electrochem Soc 153:A127Google Scholar
  198. 198.
    Jiang SP, Zhang JP, Foger K (2000) J Electrochem Soc 147:3195Google Scholar
  199. 199.
    Fergus JW (2007) Int J Hydrogen Energy 32:3664Google Scholar
  200. 200.
    Steinberger-Wilckens R, Blum L, Buchkremer H, Gross S, de Haart L, Hilpert K, Nabielek H, Quadakkers W, Reisgen U, Steinbrech RW, Tietz F (2006) Int J Appl Ceram Technol 3:470Google Scholar
  201. 201.
    Konycheva E, Hilpert K, Nabielek H, Steinberger-Wilckens R, Vinke IC, Wessel E, Zahid M (2005) Proceedings of the Fuel Cell Seminar. Palm SpringGoogle Scholar
  202. 202.
    Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) J Power Sources 55:73Google Scholar
  203. 203.
    Taniguchi S, Kadowaki M, Yasuo T, Akiyama Y, Itoh Y, Miyake Y, Nishio K (1996) Denki Kagaku 64:568Google Scholar
  204. 204.
    Gindorf C, Singheiser L, Hilpert K (2005) J Phys Chem Solids 66:384Google Scholar
  205. 205.
    Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong YP, Kishimoto H (2006) Solid State Ionics 177:3193Google Scholar
  206. 206.
    Jiang SP, Zhang JP, Zheng XG (2002) J Eur Ceram Soc 22:361Google Scholar
  207. 207.
    Jiang SP, Zhang JP, Apateanu L, Foger K (2000) J Electrochem Soc 147:4013Google Scholar
  208. 208.
    Jiang SP, Zhang S, Zhen YD (2005) J Mater Res 20:747Google Scholar
  209. 209.
    Jiang SP, Zhen YD, Zhang S (2006) J Electrochem Soc 153:A1511Google Scholar
  210. 210.
    Zhen YD, Tok AIY, Boey FYC, Jiang SP (2008) Electrochem Solid-state Lett 11:B42Google Scholar
  211. 211.
    Jiang SP, Zhen YD (2008) Solid State Ionics 179:1459Google Scholar
  212. 212.
    Chen XB, Zhang L, Jiang SP (2008) J Electrochem Soc 155:B1093Google Scholar
  213. 213.
    Komatsu T, Chiba R, Arai H, Sato K (2008) J Power Sources 176:132Google Scholar
  214. 214.
    Kim JY, Canfield NL, Chick LA, Meinhardt KD, Sprenkle VL (2005) In Bansal NP (ed), Advances in solid oxide fuel cells: ceramic engineering and science proceedings. Wiley Publisher, Ohio, USA 26:129-138Google Scholar
  215. 215.
    Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:425Google Scholar
  216. 216.
    Kurokawa H, Jacobson CP, De Jonghe LC, Visco SJ (2007) Solid State Ionics 178:287Google Scholar
  217. 217.
    Yang ZG, Xia GG, Simner SP, Stevenson JW (2005) In Bansal NP (ed), Advances in solid oxide fuel cells: ceramic engineering and science proceedings. Wiley Publisher, Ohio, USA 26:201–208Google Scholar
  218. 218.
    Gannon PE, Gorokhovsky VI, Deibert MC, Smith RJ, Kayani A, White PT, Sofie S, Yang ZG, McCready D, Visco S, Jacobson C, Kurokawa H (2007) Int J Hydrogen Energy 32:3672Google Scholar
  219. 219.
    Gannon P, Deibert M, White P, Smith R, Chen H, Priyantha W, Lucas J, Gorokhovsky V (2008) Int J Hydrogen Energy 33:3991Google Scholar
  220. 220.
    Chu CL, Wang JY, Lee S (2008) Int J Hydrogen Energy 33:2536Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Fuel Cell InnovationNational Research Council CanadaVancouverCanada

Personalised recommendations