Advertisement

Journal of Solid State Electrochemistry

, Volume 14, Issue 5, pp 865–869 | Cite as

An aqueous rechargeable lithium battery based on doping and intercalation mechanisms

  • G. J. Wang
  • L. C. Yang
  • Q. T. Qu
  • B. Wang
  • Y. P. Wu
  • R. Holze
Original Paper

Abstract

An aqueous rechargeable lithium battery (ARLB) using an electroactive polymer, polypyrrole (PPy), as a negative electrode; a lithium ion intercalation compound LiCoO2 as a positive electrode; and Li2SO4 aqueous solution as an electrolyte and its working mechanism are described. The charge/discharge process is associated with the doping/un-doping of anions at the negative electrode and intercalation/deintercalation of lithium ions at the positive electrode. The average output voltage of the PPy//LiCoO2 battery is about 0.85 V. This battery exhibits excellent cycling performance. This new technology solves the major problem of poor cycling life of ARLBs and will provide a new strategy to explore advanced energy storage and conversion systems.

Keywords

Aqueous rechargeable lithium battery (ARLB) LiCoO2 Electroactive polymer Doping/un-doping 

Notes

Acknowledgments

Financial support from National Basic Research Program of China (973 Program No: 2007CB209702) and Alexander von Humboldt Foundation (Institutional Program) is greatly appreciated.

References

  1. 1.
    Wu YP, Dai XN, Ma JQ, Cheng YJ (2004) Lithium ion batteries: practice & applications. Chemical Industry, BeijingGoogle Scholar
  2. 2.
    Van der Linden S (2006) Energy 31:3446. doi: 10.1016/j.energy.2006.03.016 CrossRefGoogle Scholar
  3. 3.
    Pietro BD, Patriarca M, Scrosati B (1982) J Power Sources 8:289. doi: 10.1016/0378-7753(82)80062-1 CrossRefGoogle Scholar
  4. 4.
    Whittingham MS (1976) Science 192:1126. doi: 10.1126/science.192.4244.1126 CrossRefGoogle Scholar
  5. 5.
    Li W, Dahn JR, Wainwright D (1994) Science 264:1115. doi: 10.1126/science.264.5162.1115 CrossRefGoogle Scholar
  6. 6.
    Glanz J (1994) Science 264:1084. doi: 10.1126/science.264.5162.1084 CrossRefGoogle Scholar
  7. 7.
    Wang GJ, Fu LJ, Zhao NH, Yang LC, Wu YP, Wu HQ (2007) Angew Chem Int Ed 46:295. doi: 10.1002/anie.200603699 CrossRefGoogle Scholar
  8. 8.
    Wang GJ, Zhang HP, Fu LJ, Wang B, Wu YP (2007) Electrochem Commun 9:1873. doi: 10.1016/j.elecom.2007.04.017 CrossRefGoogle Scholar
  9. 9.
    Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP (2008) ChemPhysChem 9:2299. doi: 10.1002/cphc.200800424 CrossRefGoogle Scholar
  10. 10.
    Stejskal J, Omastová M, Fedorova S, Prokeš J, Trchová M (2003) Polymer (Guildf) 44:1353. doi: 10.1016/S0032-3861(02)00906-0 CrossRefGoogle Scholar
  11. 11.
    Huang K, Wan MX, Long YZ, Chen ZJ, Wei Y (2005) Synth Met 155:495. doi: 10.1016/j.synthmet.2005.06.013 CrossRefGoogle Scholar
  12. 12.
    Blinova NV, Stejskal J, Trchova M, Prokes J, Omastova M (2007) Eur Polym J 43:2331. doi: 10.1016/j.eurpolymj.2007.03.045 CrossRefGoogle Scholar
  13. 13.
    Eapen A, Joe IH, Aruldhas G (1997) J Solid State Chem 133:423. doi: 10.1006/jssc.1997.7498 CrossRefGoogle Scholar
  14. 14.
    Novak P, Muller K, Santhanam K, Haas O (1997) Chem Rev 97:207. doi: 10.1021/cr941181o CrossRefGoogle Scholar
  15. 15.
    Winter M, Besenhard JO, Spahr ME, Novák P (1998) Adv Mater 10:725. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z CrossRefGoogle Scholar
  16. 16.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Mater Res Bull 15:783. doi: 10.1016/0025-5408(80)90012-4 CrossRefGoogle Scholar
  17. 17.
    Markevich E, Salitra G, Aurbach D (2005) Electrochem Commun 7:1298. doi: 10.1016/j.elecom.2005.09.010 CrossRefGoogle Scholar
  18. 18.
    Wang GJ, Qu QT, Wang B, Zhang HP, Wu YP, Holze R (2009) Electrochim Acta 54:1199. doi: 10.1016/j.electacta.2008.08.047 CrossRefGoogle Scholar
  19. 19.
    Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochem Commun 11:247. doi: 10.1016/j.elecom.2008.11.015 CrossRefGoogle Scholar
  20. 20.
    Panero S, Spila E, Scrosati B (1996) J Electrochem Soc 143:L29. doi: 10.1149/1.1836446 CrossRefGoogle Scholar
  21. 21.
    Feldberg SW (1984) J Am Chem Soc 106:4671. doi: 10.1021/ja00329a004 CrossRefGoogle Scholar
  22. 22.
    Wang GJ, Fu LJ, Wang B, Zhao NH, Wu YP, Holze R (2008) J Appl Electrochem 38:589Google Scholar
  23. 23.
    Wang GJ, Zhao NH, Yang LC, Wu YP, Holze R, Wu HQ (2007) Electrochim Acta 52:4911. doi: 10.1016/j.electacta.2007.01.051 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Chemistry & Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiChina
  2. 2.Institut für Chemie, AG ElektrochemieTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations