Diamond/porous titanium three-dimensional hybrid electrodes

  • N. A. Braga
  • C. A. A. Cairo
  • J. T. Matsushima
  • M. R. Baldan
  • N. G. Ferreira
Original Paper

Abstract

Hybrid three-dimensional electrodes produced from microcrystalline boron-doped diamond (BDD) and/or nanocrystalline diamond films were grown on porous titanium (Ti) substrate by hot filament chemical vapor deposition (HFCVD) technique. Powder metallurgy technique was used to obtain the Ti substrates provided by interconnected and open pores among its volume. Diamond growth parameters were optimized in order to provide the entire substrate surface covering including the deeper surfaces, pore bottoms, and walls. The morphology and structure of these electrodes were studied by scanning electron microscopy (SEM) and visible Raman spectroscopy techniques, respectively. Electrochemical response was characterized by cyclic voltammetry measurements. Results showed a wide working potential window and low background current characteristic of the diamond electrodes. The kinetic parameters also pointed out to a quasi-reversible behavior for these hybrid three-dimensional diamond/Ti electrodes.

Keywords

Porous titanium Diamond Electrodes Three-dimensional porosity 

References

  1. 1.
    Braga NA, Cairo CAA, Almeida EC, Baldan MR, Ferreira NG (2008) Diam Relat Mater 17:1891. doi:10.1016/j.diamond.2008.04.002 CrossRefGoogle Scholar
  2. 2.
    Braga NA, Cairo CAA, Almeida EC, Baldan MR, Ferreira NG (2009) in pressGoogle Scholar
  3. 3.
    Cappuccio G, Sessa V, Terranova ML (1996) Appl Phys Lett 69:4176. doi:10.1063/1.116977 CrossRefGoogle Scholar
  4. 4.
    Swain GM (1994) J Electrochem Soc 141:3382. doi:10.1149/1.2059343 CrossRefGoogle Scholar
  5. 5.
    Vinokur N, Miller B, Avyigal Y, Kalish R (1996) J Electrochem Soc 143:L238. doi:10.1149/1.1837157 CrossRefGoogle Scholar
  6. 6.
    Pleskov YV, Sakharova AY, Krotova MD, Bouilov LL, Spitsyn BV (1987) J Electroanal Chem 228:19. doi:10.1016/0022-0728(87)80093-1 CrossRefGoogle Scholar
  7. 7.
    Szunerits S, Boukherroub R (2008) J Solid State Electrochem 12:1205. doi:10.1007/s10008-007-0473-3 CrossRefGoogle Scholar
  8. 8.
    Kondo T, Niwano Y, Tamura A, Ivandini TA, Einaga Y, Tryk DA, Fujishima A, Kawai T (2008) Electroanalysis 20:1556. doi:10.1002/elan.200804212 CrossRefGoogle Scholar
  9. 9.
    Denisova AE, Pleskov YV (2008) Russ J Electrochem 44:1083. doi:10.1134/S1023193508090152 CrossRefGoogle Scholar
  10. 10.
    Chuanuwatanakul S, Chalapakul O, Motomizu S (2008) Anal Sci 24:493. doi:10.2116/analsci.24.493 CrossRefGoogle Scholar
  11. 11.
    Swain GM (1994) Adv Mater 6:388. doi:10.1002/adma.19940060511 CrossRefGoogle Scholar
  12. 12.
    Chen Q, Granger MC, Lister TE, Swain GM (1997) J Electrochem Soc 144:3806. doi:10.1149/1.1838096 CrossRefGoogle Scholar
  13. 13.
    Declements R, Hirsche BL, Granger MC, Xu J, Swain GM (1996) J Electrochem Soc 143:L150. doi:10.1149/1.1836958 CrossRefGoogle Scholar
  14. 14.
    Declements R, Swain GM (1997) J Electrochem Soc 144:856. doi:10.1149/1.1837500 CrossRefGoogle Scholar
  15. 15.
    Zhu JZ, Yang SZ, Xu CF, Fan HZ (1995) Frenesius’ J Anal Chem 352:389. doi:10.1007/BF00322239 CrossRefGoogle Scholar
  16. 16.
    Duo I, Michaud PA, Haenni W, Perret A, Comninellis CH (2000) Electrochem Solid-State Lett 3:325. doi:10.1149/1.1391137 CrossRefGoogle Scholar
  17. 17.
    Javier Del Campo F, Goeting CH, Morris D, Foord JS, Neudeck A, Compton RG, Marken F (2000) Electrochem Solid-State Lett 3:224. doi:10.1149/1.1391008 CrossRefGoogle Scholar
  18. 18.
    Wang J, Swain GM, Tachibana T, Kobashi K (2000) Electrochem Solid-State Lett 3:286. doi:10.1149/1.1391126 CrossRefGoogle Scholar
  19. 19.
    Popa E, Kubota Y, Tryk DA, Fujishima A (2000) Anal Chem 72:1724. doi:10.1021/ac990862m CrossRefGoogle Scholar
  20. 20.
    Koppang MD, Witek M, Blau J, Swain GM (1999) Anal Chem 71:1188. doi:10.1021/ac980697v CrossRefGoogle Scholar
  21. 21.
    Manivannan A, Tryk DA, Fujishima A (1999) Electrochem Solid-State Lett 2:455. doi:10.1149/1.1390869 CrossRefGoogle Scholar
  22. 22.
    Peiling Z, Jianzhong Z, Shenzhong Y, Xikang Z, Guoxiong Z (1995) Fresenius’ J Anal Chem 353:171. doi:10.1007/BF00322953 CrossRefGoogle Scholar
  23. 23.
    Honda K, Rao TN, Tryk DA, Fujishima A, Watanabe M, Yasui K, Masuda H (2000) J Electrochem Soc 147:659. doi:10.1149/1.1393249 CrossRefGoogle Scholar
  24. 24.
    Rao TN, Fujishima A (2000) Diam Relat Mater 9:384. doi:10.1016/S0925-9635(99)00234-4 CrossRefGoogle Scholar
  25. 25.
    Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) Appl Phys Lett 70:1480. doi:10.1063/1.118568 CrossRefGoogle Scholar
  26. 26.
    Tanahashi I, Yashida A, Nishino A (1990) J Electrochem Soc 137:3052. doi:10.1149/1.2086158 CrossRefGoogle Scholar
  27. 27.
    Ryan G, Pandit A, Apatsidis DP (2006) Biomaterials 27:2651. doi:10.1016/j.biomaterials.2005.12.002 CrossRefGoogle Scholar
  28. 28.
    Setoyama D, Matsunaga J, Muta H, Uno M, Yamanaka S (2004) J Alloys Compd 358:156. doi:10.1016/j.jallcom.2004.04.132 CrossRefGoogle Scholar
  29. 29.
    Senkov ON, Chakoumakos BC, Jonas JJ, Froes FH (2001) Mater Res Bull 36:1431. doi:10.1016/S0025-5408(01)00604-3 CrossRefGoogle Scholar
  30. 30.
    Pleskov YV, Evstefeeva YE, Krotova MD, Py L, Shih HC, Varnin VP, Teremetskaya IG, Vlasov II, Ralchenko VG (2005) J Appl Electrochem 35:857. doi:10.1007/s10800-005-2572-0 CrossRefGoogle Scholar
  31. 31.
    Gerger I, Haubner R, Kronberger H, Fafilek G (2004) Diam Relat Mater 13:1062. doi:10.1016/j.diamond.2004.01.025 CrossRefGoogle Scholar
  32. 32.
    Chen X, Chen G (2004) J Electrochem Soc 151:B214. doi:10.1149/1.1651529 CrossRefGoogle Scholar
  33. 33.
    Braga NA, Cairo CAA, Ferreira NG (2007) Quim Nova 30:450Google Scholar
  34. 34.
    Ferreira NG, Silva LLG, Corat EJ, Trava Airoldi VJ, Iha K (1999) Braz J Phys 29:760Google Scholar
  35. 35.
    Haubner R, Lux B (2002) Int J Refract Met Hard Mater 20:93. doi:10.1016/S0263-4368(02)00006-9 CrossRefGoogle Scholar
  36. 36.
    Bühlmann S, Blank E, Haubner R, Lux B (1999) Diam Relat Mater 8:194. doi:10.1016/S0925-9635(98)00258-1 CrossRefGoogle Scholar
  37. 37.
    Askari SJ, Akhtar F, Chen GC, He Q, Wang FY, Meng XM et al (2007) Mater Lett 61:2139. doi:10.1016/j.matlet.2006.08.033 CrossRefGoogle Scholar
  38. 38.
    Fu YQ, Yan BB, Loh NL, Sun CQ, Hing P (1999) J Mater Sci 34:2269. doi:10.1023/A:1004569406535 CrossRefGoogle Scholar
  39. 39.
    May PW, Mankelevich YA (2008) J Phys Chem C 112:12432. doi:10.1021/jp803735a CrossRefGoogle Scholar
  40. 40.
    Knight DS, White WB (1989) J Mater Res 4:385. doi:10.1557/JMR.1989.0385 CrossRefGoogle Scholar
  41. 41.
    Chu PK, Li L (2006) Mater Chem Phys 96:253. doi:10.1016/j.matchemphys.2005.07.048 CrossRefGoogle Scholar
  42. 42.
    Ferrari AC, Robertson J (2001) Phys Rev B 64:075414. doi:10.1103/PhysRevB.64.075414 CrossRefGoogle Scholar
  43. 43.
    Silva LLG, Corat EJ, Barros RCM, Trava-Airoldi VJ, Leite NF (1999) Mater Res 2:1Google Scholar
  44. 44.
    Zhang RJ, Lee ST, Lam YW (1996) Diam Relat Mater 5:1288. doi:10.1016/0925-9635(96)00539-0 CrossRefGoogle Scholar
  45. 45.
    Colineau E, Gheeraert E, Deneuville A, Manbou J, Brunet F (1997) Diam Relat Mater 6:778. doi:10.1016/S0925-9635(96) 00705-4 CrossRefGoogle Scholar
  46. 46.
    Woehrl N, Buck V (2007) Diam Relat Mater 16:748. doi:10.1016/j.diamond.2006.11.059 CrossRefGoogle Scholar
  47. 47.
    Cicala G, Bruno P, Benedic F, Silva F, Hassouni K, Senesi GS (2005) Diam Relat Mater 14:421. doi:10.1016/j.diamond.2004.12.025 CrossRefGoogle Scholar
  48. 48.
    Martin HB, Argoitia A, Landau U, Anderson AB, Angus JC (1996) J Electrochem Soc 6:L133. doi:10.1149/1.1836901 CrossRefGoogle Scholar
  49. 49.
    Granger MC, Xu JS, Strojek JW, Swain JM (1999) Anal Chim Acta 397:145. doi:10.1016/S0003-2670(99)00400-6 CrossRefGoogle Scholar
  50. 50.
    Show Y, Witek MA, Sonthalia P, Swain GM (2003) Chem Mater 15:879. doi:10.1021/cm020927t CrossRefGoogle Scholar
  51. 51.
    Panizza M, Cerisola G (2005) Electrochim Acta 51:191. doi:10.1016/j.electacta.2005.04.023 CrossRefGoogle Scholar
  52. 52.
    Foti G, Gandini D, Comninellis C, Perret A, Haenni W (1999) Electrochem Solid-State Lett 5:228. doi:10.1149/1.1390792 CrossRefGoogle Scholar
  53. 53.
    Granger MC, Swain GMJ (1999) J Electrochem Soc 146:4551. doi:10.1149/1.1392673 CrossRefGoogle Scholar
  54. 54.
    Tryk DA, Tsunozaki K, Rao TN, Fujishima A (2001) Diam Relat Mater 10:1804. doi:10.1016/S0925-9635(01)00453-8 CrossRefGoogle Scholar
  55. 55.
    Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Wiley, New YorkGoogle Scholar
  56. 56.
    Chen P, McCreey RL (1996) Anal Chem 68:3958. doi:10.1021/ac960492r CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • N. A. Braga
    • 1
  • C. A. A. Cairo
    • 2
  • J. T. Matsushima
    • 1
  • M. R. Baldan
    • 1
  • N. G. Ferreira
    • 1
  1. 1.Instituto Nacional de Pesquisas Espaciais, INPESão José dos CamposBrazil
  2. 2.Comando-Geral de Tecnologia Aeroespacial, CTASão José dos CamposBrazil

Personalised recommendations