Advertisement

Application of pulsating overpotential regime on the formation of copper deposits in the range of hydrogen co-deposition

  • N. D. Nikolić
  • G. Branković
  • V. M. Maksimović
  • M. G. Pavlović
  • K. I. Popov
Original Paper

Abstract

Electrodeposition of copper by pulsating overpotential (PO) regime in the range of hydrogen co-deposition was examined by scanning electron microscopy. It was found that the increase of the pause-to-pulse ratio produced a strong effect on the morphology of electrodeposited copper. Honeycomb-like copper structures were formed with the pause-to-pulse ratios up to 5. Up to this value of the pause-to-pulse ratio, the diameter of the holes formed by attached hydrogen bubbles was decreasing, while their number was increasing by the application of PO regime. The compactness of the formed honeycomb-like structures was also increasing with the increasing pause duration. The increase of the pause-to-pulse ratio suppressed a coalescence of neighboring hydrogen bubbles. Copper dendrites in the interior of the holes and at their shoulders were formed with the higher pause-to-pulse ratios. The size of the formed dendrites, as well as their number, increased with the increasing pause duration. Depth of holes was decreasing with the increasing pause duration. The increased compactness of the obtained structures was explained by the use of a set of equations describing the effect of square-wave PO on electrodeposition process.

Keywords

Electrodeposition Copper Hole Dendrites Pulsating overpotential Scanning electron microscope (SEM) 

Notes

Acknowledgement

The work was supported by the Ministry of Science and Technological Development of the Republic of Serbia under the research project: “Deposition of ultrafine powders of metals and alloys and nanostructured surfaces by electrochemical techniques” (no. 142032G).

References

  1. 1.
    Shin HC, Dong J, Liu M (2003) Adv Mater 15:1610. doi: 10.1002/adma.200305160 CrossRefGoogle Scholar
  2. 2.
    Shin HC, Liu M (2004) Chem Mater 16:5460. doi: 10.1021/cm048887b CrossRefGoogle Scholar
  3. 3.
    Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) J Electroanal Chem 588:88. doi: 10.1016/j.jelechem.2005.12.006 CrossRefGoogle Scholar
  4. 4.
    Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2006) Surf Coat Technol 201:560. doi: 10.1016/j.surfcoat.2005.12.004 CrossRefGoogle Scholar
  5. 5.
    Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) J Solid State Electrochem 11:667. doi: 10.1007/s10008-006-0222-z CrossRefGoogle Scholar
  6. 6.
    Nikolić ND, Pavlović LjJ, Pavlović MG, Popov KI (2007) Electrochim Acta 52:8096. doi: 10.1016/j.electacta.2007.07.008 CrossRefGoogle Scholar
  7. 7.
    Nikolić ND, Popov KI, Pavlović LjJ, Pavlović MG (2007) Sensors 7:1. doi: 10.3390/s7010001 CrossRefGoogle Scholar
  8. 8.
    Nikolić ND, Pavlović LjJ, Krstić SB, Pavlović MG, Popov KI (2008) Chem Eng Sci 63:2824. doi: 10.1016/j.ces.2008.02.022 CrossRefGoogle Scholar
  9. 9.
    Nikolić ND, Branković G, Pavlović MG, Popov KI (2008) J Electroanal Chem 621:13. doi: 10.1016/j.jelechem.2008.04.006 CrossRefGoogle Scholar
  10. 10.
    Shin HC, Liu M (2005) Adv Funct Mater 15:582. doi: 10.1002/adfm.200305165 CrossRefGoogle Scholar
  11. 11.
    Dima GE, de Vooys ACA, Koper MTM (2003) J Electroanal Chem 554–555:15CrossRefGoogle Scholar
  12. 12.
    Pletcher D, Poorbedi Z (1979) Electrochim Acta 24:1253. doi: 10.1016/0013-4686(79)87081-4 CrossRefGoogle Scholar
  13. 13.
    Kim J-H, Kim R-H, H-Sang K (2008) Electrochem Commun 10:1148. doi: 10.1016/j.elecom.2008.05.035 CrossRefGoogle Scholar
  14. 14.
    Oniciu L, Muresan L (1991) J Appl Electrochem 21:565. doi: 10.1007/BF01024843 CrossRefGoogle Scholar
  15. 15.
    Muresan L, Varvara S (2005) In: Nunez M (ed) Metal electrodeposition. Nova Science, New York, pp 1–45.Google Scholar
  16. 16.
    Popov KI, Maksimović MD (1989) In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol. 19. Plenum, New YorkGoogle Scholar
  17. 17.
    Paunovic M (2000) In: Schlesinger M, Paunovic M (eds) Modern electroplating. Wiley, New YorkGoogle Scholar
  18. 18.
    Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer, New YorkGoogle Scholar
  19. 19.
    Chi-Chang H, Chi-Ming W (2003) Surf Coat Technol 176:75. doi: 10.1016/S0257-8972(03)00004-5 CrossRefGoogle Scholar
  20. 20.
    Chandrasekar MS, Pushpavanam M (2008) Electrochim Acta 53:3313. doi: 10.1016/j.electacta.2007.11.054 CrossRefGoogle Scholar
  21. 21.
    Landolt D, Marlot A (2003) Surf Coat Technol 169–170:8. doi: 10.1016/S0257-8972(03)00042-2 CrossRefGoogle Scholar
  22. 22.
    Tantavichet N, Pritzker MD (2005) Electrochim Acta 50:1849. doi: 10.1016/j.electacta.2004.08.045 CrossRefGoogle Scholar
  23. 23.
    Nikolić ND, Branković G, Pavlović MG, Popov KI (2009) Electrochem Commun 11:421. doi: 10.1016/j.elecom.2008.12.007 CrossRefGoogle Scholar
  24. 24.
    Popov KI, Stojilković ER, Radmilović V, Pavlović MG (1997) Powder Technol 93:55. doi: 10.1016/S0032-5910(97)03258-0 CrossRefGoogle Scholar
  25. 25.
    Barton L, Bockris JO`M (1962) Proc Roy Soc A268:485Google Scholar
  26. 26.
    Despić A, Popov KI (1972) In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol. 7. Plenum, New York.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • N. D. Nikolić
    • 1
  • G. Branković
    • 2
  • V. M. Maksimović
    • 3
  • M. G. Pavlović
    • 1
  • K. I. Popov
    • 1
    • 4
  1. 1.ICTM–Institute of ElectrochemistryUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Multidisciplinary ResearchBelgradeSerbia
  3. 3.Vinča Institute of Nuclear SciencesBelgradeSerbia
  4. 4.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations