Skip to main content
Log in

Electrochemical properties of single-phase LiFePO4 synthesized using LiF as Li precursor and hydrogen and carbon gel as reducing agents

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiFePO4 samples have been synthesized by mixing stoichiometric amounts of (NH4)2HPO4, FeC2O4·2H2O, and LiF. During synthesis, carbon gel was used as the carbon source. Single-phase LiFePO4 can be formed when the heating temperature ranges from 650 to 800 °C and it is decomposed into Li4P2O7, Li3PO4, Fe2P, and Li3P7 when the temperature comes to 850 °C. We find that the ratio of the lattice parameter (a/c) decreases with the increasing temperature, thereby increasing the Li+ diffusion channel length. Both the decrease of a/c and the abrupt crystal growth are expected to contribute to the monotonic decrease of the initial capacity of the samples. The sample heated at 650 °C with a smaller uniform particle size and relative higher specific surface area (8.2 m2/g) shows an excellent electrochemical performance. The initial specific capacity of 156.7(3) mAh/g is obtained at the rate of C/10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thackeray MM, Thomas JO, Whittingham MS (2000) MRS Bull 25(3):39

    CAS  Google Scholar 

  2. Kerr TA, Gaubicher J, Nazar LF (2000) Electrochem Solid-State Lett 3:460. doi:10.1149/1.1391179

    Article  CAS  Google Scholar 

  3. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123. doi:10.1038/nmat732

    Article  CAS  Google Scholar 

  4. Franger S, Cras FL, Bourbon C, Rouault H (2002) Electrochem Solid-State Lett 5:231. doi:10.1149/1.1506962

    Article  Google Scholar 

  5. Takahashi M, Tobishima S, Takei K, Sakurai Y (2001) J Power Sources 97–98:508. doi:10.1016/S0378-7753(01) 00728-5

    Article  Google Scholar 

  6. Deoff MM, Hu YQ, McLarnon F, Kostecki R (2003) Electrochem Solid-State Lett 6:207. doi:10.1149/1.1601372

    Article  Google Scholar 

  7. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid-State Lett 4:170. doi:10.1149/1.1396695

    Article  Google Scholar 

  8. Franger S, Bourbon C, Cras FL (2004) J Electrochem Soc 151:1024. doi:10.1149/1.1758721

    Article  Google Scholar 

  9. Prosini PP, Zane D, Pasquali M (2001) Electrochim Acta 46:3517. doi:10.1016/S0013-4686(01) 00631-4

    Article  CAS  Google Scholar 

  10. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kim HG (2004) Solid State Commun 129:311. doi:10.1016/j.ssc.2003.10.015

    Article  CAS  Google Scholar 

  11. Wang GX, Bewlay S, Yao J, Ahn JH, Liu HK, Dou SX (2004) Electrochem Solid-State Lett 7:A503. doi:10.1149/1.1819867

    Article  CAS  Google Scholar 

  12. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224. doi:10.1149/1.1348257

    Article  CAS  Google Scholar 

  13. Li G, Azuma H, Tohda M (2002) J Electrochem Soc 149:A743. doi:10.1149/1.1473776

    Article  CAS  Google Scholar 

  14. Spong AD, Vitins G, Owen JR (2005) J Electrochem Soc 152:A2376. doi:10.1149/1.2120427

    Article  CAS  Google Scholar 

  15. Wang D, Li H, Wang Z, Wu X, Sun Y, Huang X, Chen L (2004) J Solid State Chem 177:4582. doi:10.1016/j.jssc.2004.09.013

    Article  CAS  Google Scholar 

  16. Lin C, Ritter JA (1997) Carbon 35(9):1271. doi:10.1016/S0008-6223(97)00069-9

    Article  CAS  Google Scholar 

  17. Franger S, Cras FL, Bourbon C, Rouault H (2003) J Power Sources 119–121:252. doi:10.1016/S0378-7753(03) 00242-8

    Article  Google Scholar 

  18. Cho TH, Chung HT (2004) J Power Sources 133:272. doi:10.1016/j.jpowsour.2004.02.015

    Article  CAS  Google Scholar 

  19. Ouyang CY, Shi SQ, Wang ZX, Huang XJ, Chen LQ (2004) Phys Rev B 69(10):104303

    Article  Google Scholar 

  20. Andersson AS, Thomas JO (2001) J Power Sources 97–98:498. doi:10.1016/S0378-7753(01) 00633-4

    Article  Google Scholar 

  21. Barker J, Saidi MY, Swoyer JL (2004) J Electrochem Soc 151:A1670. doi:10.1149/1.1785796

    Article  CAS  Google Scholar 

  22. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid-State Lett 6:A53. doi:10.1149/1.1544211

    Article  CAS  Google Scholar 

  23. Barker J, Saidi MY, Swoyer JL (2003) J Electrochem Soc 150:A684. doi:10.1149/1.1568936

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Grant (No. 50772039) and by the Science and Technology Bureau of Guangdong government (No. 07118058). The authors are indebted to Prof. G. L. Lv of Zhejiang University of China and Prof. C. Dong of Institute of Physics, Chinese Academy of Science for their assistance with the XRD experiments. We also thank Prof. Y. J. Zhao and Prof. X. Chen of South China University of Technology for the correction on the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y.Z., Zhao, Y.M., Duan, H. et al. Electrochemical properties of single-phase LiFePO4 synthesized using LiF as Li precursor and hydrogen and carbon gel as reducing agents. J Solid State Electrochem 14, 131–137 (2010). https://doi.org/10.1007/s10008-009-0798-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0798-1

Keywords

Navigation