Journal of Solid State Electrochemistry

, Volume 13, Issue 7, pp 1111–1114 | Cite as

Study of the temporal distribution of the adhesion-spreading events of liposomes on a mercury electrode

  • Víctor Agmo Hernández
  • Alexander Milchev
  • Fritz Scholz
Original Paper

Abstract

The formal analysis of the mechanism of adhesion spreading of liposomes at mercury electrodes shares several characteristics with the mechanism of metal nucleation at electrodes. It is shown that the description of the temporal distribution of the adhesion-spreading events is similar to that of the temporal distribution of metal clusters. Both processes are stochastic in nature and can be described by the Poisson distribution. Using this approach, a previously proposed model for the overall adhesion-spreading mechanism, considering the formation of active sites on the liposome and the actual attachment of the liposomes to the mercury surface, is validated.

Keywords

Liposomes Chronoamperometry Adhesion spreading Mercury electrode DMPC Metal nucleation 

References

  1. 1.
    Lasic DD (1992) Am Sci 80:20Google Scholar
  2. 2.
    Lasic DD (1995) Applications of liposomes. In: Lipowski R, Sackmann E (eds) Structure and dynamics of membranes. From cells to vesicles. Elsevier Science, HollandGoogle Scholar
  3. 3.
    Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305 doi:10.1016/S1388-2481(02)00279-5 CrossRefGoogle Scholar
  4. 4.
    Hellberg D, Scholz F, Schubert F, Lovrić M, Omanović D, Agmo Hernández V, Thede R (2005) J Phys Chem B 109:14715 doi:10.1021/jp050816s CrossRefGoogle Scholar
  5. 5.
    Agmo Hernández V, Scholz F (2006) Langmuir 22:10723 doi:10.1021/la060908o CrossRefGoogle Scholar
  6. 6.
    Agmo Hernández V, Scholz F (2008) Bioelectrochemistry 74:149 doi:10.1016/j.bioelechem.2008.06.007 CrossRefGoogle Scholar
  7. 7.
    Agmo Hernández V, Scholz F (2008) Isr J Chem 48:169CrossRefGoogle Scholar
  8. 8.
    Žutić V, Svetličić V, Zimmerman AH, DeNardis NI, Frkanec R (2007) Langmuir 23:8647 doi:10.1021/la063712x CrossRefGoogle Scholar
  9. 9.
    Sek S, Xu S, Chen M, Szymanski G, Lipkowski J (2008) J Am Chem Soc 130:5736 doi:10.1021/ja711020q CrossRefGoogle Scholar
  10. 10.
    Li M, Chen M, Sheepwash E, Brosseau CL, Li H, Pettinger B, Gruler H, Lipkowski J (2008) Langmuir 24:10313 doi:10.1021/la800800m CrossRefGoogle Scholar
  11. 11.
    Agmo Hernández V, Scholz F (2007) Langmuir 23:8650 doi:10.1021/la7009435 CrossRefGoogle Scholar
  12. 12.
    Agmo Hernández V, Hermes M, Milchev A, Scholz F (2008) J Solid State Electrochem. doi:10.1007/s10008-008-0639-7
  13. 13.
    Lipowski R (1998) In: Trigg GL (ed) Encyclopedia of applied physics, vol 23. Wiley, New YorkGoogle Scholar
  14. 14.
    Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, Satija S (2004) Biophys J 86:1763CrossRefGoogle Scholar
  15. 15.
    Milchev A (2002) Electrocrystallization. Fundamentals of nucleation and growth. Kluwer, USAGoogle Scholar
  16. 16.
    Milchev A (2008) Russ J Electrochem 44:619 doi:10.1134/S1023193508060025 CrossRefGoogle Scholar
  17. 17.
    Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN (1996) Proc Natl Acad Sci U S A 93:11443 doi:10.1073/pnas.93.21.11443 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Víctor Agmo Hernández
    • 1
  • Alexander Milchev
    • 2
  • Fritz Scholz
    • 3
  1. 1.Department of Physical and Analytical Chemistry, Div. of Physical ChemistryUppsala UniversityUppsalaSweden
  2. 2.Rostislaw Kaischew Institute of Physical ChemistryBulgarian Academy of Sciences Acad. G.SofiaBulgaria
  3. 3.Institut für BiochemieUniversität GreifswaldGreifswaldGermany

Personalised recommendations