Journal of Solid State Electrochemistry

, Volume 13, Issue 4, pp 551–563 | Cite as

Theoretical and experimental evaluation of screen-printed tubular carbon ink disposable sensor well electrodes by dc and Fourier transformed ac voltammetry

  • Anastassija Konash
  • Alexander R. Harris
  • Jie Zhang
  • Darrell Elton
  • Mark Hyland
  • Gareth Kennedy
  • Alan M. Bond
Original Paper

Abstract

Mass-produced, screen-printed, carbon-ink-based microtubular band (well) electrodes, suitable for routine sensing applications, have been fabricated and evaluated with respect to their theoretical and analytical performance. Microscopic examination of the electrode surface reveals they are inherently rough and could easily suffer from high and variable resistance, capacitance and area, unless care is taken to minimise these problems. Simulation models have been applied to analyse cyclic voltammetric responses obtained at the well electrodes. Results of these theoretical calculations further demonstrate the care needed with electrode design and resistance in carbon ink electrodes. Substantial differences in voltammetry when wells are produced by mechanically punching or laser drilling are considered. The application of multi- and single-frequency Fourier Transform ac voltammetry, previously applied to planar carbon ink disc electrodes for quality control purposes, is now demonstrated with respect to the microtubular band electrode geometry. Theoretical and practical limitations are discussed, as is the analytical application to the reversible \(\left[ {{\text{Ru}}\left( {{\text{NH}}_3 } \right)_6 } \right]^{3 + } + e^ - \rightleftharpoons \left[ {{\text{Ru}}\left( {{\text{NH}}_3 } \right)_6 } \right]^{2 + } \) redox couple in the presence of oxygen in aqueous solution.

Keywords

Screen-printed tubular band electrodes Well electrodes Fourier Transform ac voltammetry Electrode performance 

References

  1. 1.
    Galan-Vidal CA, Munoz J, Dominguez C, Alegret S (1995) TrAC trends. Anal Chem 14:225–231Google Scholar
  2. 2.
    Wang J (2002) TrAC trends. Anal Chem 21:226–232Google Scholar
  3. 3.
    Hart JP, Wring SA (1994) Electroanalysis 6:617–624. doi:10.1002/elan.1140060802 CrossRefGoogle Scholar
  4. 4.
    Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Anal Lett 37:789–830. doi:10.1081/AL-120030682 CrossRefGoogle Scholar
  5. 5.
    Green MJ, Hilditch PI (1991) Anal Proc 28:374–376Google Scholar
  6. 6.
    Kovach PM, Caudill WL, Peters DG, Wightman RM (1985) J Electroanal Chem Interfacial Electrochem 185:285–295. doi:10.1016/0368-1874(85)80136-2 CrossRefGoogle Scholar
  7. 7.
    Wightman RM (1988) Science 240:415–420. doi:10.1126/science.240.4851.415 CrossRefGoogle Scholar
  8. 8.
    Bond AM, Luscombe D, Oldham KB, Zoski CG (1988) J Electroanal Chem 249:1–14. doi:10.1016/0022-0728(88)80345-0 CrossRefGoogle Scholar
  9. 9.
    Hyland M, Lorimer K, Dobson PJ, Askew HF (2005) Micro-band electrode manufacturing method. WO2005121762Google Scholar
  10. 10.
    Hyland M, Lorimer K, Wedge CR, Broughall JM, Butler RN (2006) Method of manufacturing an electrochemical sensor. US20060008581Google Scholar
  11. 11.
    Ball JC, Scott DL, Lumpp JK, Daunert S, Wang J, Bachas LG (2000) Anal Chem 72:497–501. doi:10.1021/ac991163c CrossRefGoogle Scholar
  12. 12.
    Ball JC, Lumpp JK, Daunert S, Bachas LG (2000) Electroanalysis 12:685–690. doi:10.1002/1521-4109(200005)12:9<685::AID-ELAN685>3.0.CO;2-8 CrossRefGoogle Scholar
  13. 13.
    Hyland M, Lorimer K, Butler RN, Wallace-Davis ENK, Astier Y (2003) Micro-band electrode in conjunction with enzymes and other electro-active substances. WO2003056319Google Scholar
  14. 14.
    Aoki K, Tanaka M (1989) J Electroanal Chem 266:11–20. doi:10.1016/0022-0728(89)80211-6 CrossRefGoogle Scholar
  15. 15.
    Aoki K (1993) Electroanalysis 5:627–639. doi:10.1002/elan.1140050802 CrossRefGoogle Scholar
  16. 16.
    Porat Z, Crooker JC, Zhang Y, Mest YL, Murray RW (1997) Anal Chem 69:5073–5081. doi:10.1021/ac970803d CrossRefGoogle Scholar
  17. 17.
    Engblom SO, Cope DK, Tallman DE (1996) J Electroanal Chem 406:23–31. doi:10.1016/0022-0728(95)04446-9 CrossRefGoogle Scholar
  18. 18.
    Amatore CA, Fosset B, Deakin MR, Wightman RM (1987) J Electroanal Chem 225:33–48. doi:10.1016/0022-0728(87)80003-7 CrossRefGoogle Scholar
  19. 19.
    Deakin MR, Wightman RM, Amatore CA (1986) J Electroanal Chem 215:49–61. doi:10.1016/0022-0728(86)87004-8 CrossRefGoogle Scholar
  20. 20.
    Harris A, Zhang J, Konash A, Elton D, Hyland M, Bond A (2008) J Solid State Electrochem 12:1301–1315. doi:10.1007/s10008-008-0524-4 CrossRefGoogle Scholar
  21. 21.
    Hyland M (2006) Electrode for electrochemical sensor. WO2006000828Google Scholar
  22. 22.
    Bond AM, Duffy N, Guo S, Zhang J, Elton D (2005) Anal Chem 77:186A–195ACrossRefGoogle Scholar
  23. 23.
    Rudolph M, Reddy DP, Feldberg SW (1994) Anal Chem 66:A586–A600. doi:10.1021/ac00082a002 CrossRefGoogle Scholar
  24. 24.
    Oldham KB, Myland JC (1994) Fundamentals of electrochemical science. Academic, San DiegoGoogle Scholar
  25. 25.
    Unwin PR, Bard AJ (1991) J Phys Chem 95:7814–7824. doi:10.1021/j100173a049 CrossRefGoogle Scholar
  26. 26.
    Oldham KB (1981) J Electroanal Chem Interfacial Electrochem 122:1–17Google Scholar
  27. 27.
    Feldberg SW (1981) J Electroanal Chem Interfacial Electrochem 127:1–10. doi:10.1016/S0022-0728(81)80462-7 CrossRefGoogle Scholar
  28. 28.
    Gavaghan DJ (1998) J Electroanal Chem 456:1–12. doi:10.1016/S0022-0728(98)00239-3 CrossRefGoogle Scholar
  29. 29.
    Brooks BA, Gavaghan DJ, Compton RG (2002) J Phys Chem B 106:4886–4896. doi:10.1021/jp014049i CrossRefGoogle Scholar
  30. 30.
    Sher AA, Bond AM, Gavaghan DJ, Harriman K, Feldberg SW, Duffy NW, Guo S-X, Zhang J (2004) Anal Chem 76:6214–6228. doi:10.1021/ac0495337 CrossRefGoogle Scholar
  31. 31.
    Pontikos NM, McCreery RL (1992) J Electroanal Chem 324:229–242. doi:10.1016/0022-0728(92)80048-9 CrossRefGoogle Scholar
  32. 32.
    Poon M, McCreery RL (1986) Anal Chem 58:2745–2750. doi:10.1021/ac00126a036 CrossRefGoogle Scholar
  33. 33.
    Seddon BJ, Shao Y, Fost J, Giraults HH (1994) Electrochim Acta 39:783–791. doi:10.1016/0013-4686(93)E0038-N CrossRefGoogle Scholar
  34. 34.
    Seddon BJ, Osborne MD, Lagger G, Dryfe RAW, Loyall U, Schaefer H, Girault HH (1997) Electrochim Acta 42:1883–1894. doi:10.1016/S0013-4686(96)00401-X CrossRefGoogle Scholar
  35. 35.
    Osborne MD, Seddon BJ, Dryfe RAW, Lagger G, Loyal U, Schifer H, Girault HH (1996) J Electroanal Chem 417:5–15. doi:10.1016/S0022-0728(96)04781-X CrossRefGoogle Scholar
  36. 36.
    Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New YorkGoogle Scholar
  37. 37.
    Morris NA, Cardosi MF, Birch BJ, Turner APF (1992) Electroanalysis 4:1–9. doi:10.1002/elan.1140040104 CrossRefGoogle Scholar
  38. 38.
    Zhang J, Guo SX, Bond AM (2007) Anal Chem 79:2276–2288. doi:10.1021/ac061859n CrossRefGoogle Scholar
  39. 39.
    Honeychurch MJ, Bond AM (2002) J Electroanal Chem 529:3–11. doi:10.1016/S0022-0728(02)00907-5 CrossRefGoogle Scholar
  40. 40.
    Guo S, Zhang J, Elton DM, Bond AM (2004) Anal Chem 76:166–177. doi:10.1021/ac034901c CrossRefGoogle Scholar
  41. 41.
    Hibbert DB, Gooding JJ (2006) Data analysis for chemistry. Oxford University Press, New YorkGoogle Scholar
  42. 42.
    O’Mullane AP, Zhang J, Brajter-Toth A, Bond AM (2008) Anal Chem 80:4614–4626. doi:10.1021/ac0715221 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Anastassija Konash
    • 1
  • Alexander R. Harris
    • 1
    • 2
  • Jie Zhang
    • 1
    • 3
  • Darrell Elton
    • 4
  • Mark Hyland
    • 2
  • Gareth Kennedy
    • 1
  • Alan M. Bond
    • 1
  1. 1.School of Chemistry and ARC Centre for Green ChemistryMonash UniversityClaytonAustralia
  2. 2.Oxford Biosensors LtdOxford Industrial ParkYarntonUK
  3. 3.Institute of Bioengineering and NanotechnologyThe NanosSingapore
  4. 4.Department of Electronic EngineeringLatrobe UniversityBundooraAustralia

Personalised recommendations