Journal of Solid State Electrochemistry

, Volume 13, Issue 10, pp 1577–1584 | Cite as

Silver electrodeposition from water–acetonitrile mixed solvents and mixed electrolytes in the presence of tetrabutylammonium perchlorate. Part I—electrochemical nucleation on glassy carbon electrode

  • Claudio MeleEmail author
  • Sandra Rondinini
  • Lucia D’Urzo
  • Vincenzo Romanello
  • Elisabetta Tondo
  • Alessandro Minguzzi
  • Alberto Vertova
  • Benedetto Bozzini
Original Paper


Nucleation and growth of silver, electrodeposited from water–acetonitrile (CH3CN from 0 to 100% by volume) mixed solvents on glassy carbon electrodes, was studied by means of double-sweep voltammetry, current–time transients (CTT) and scanning electron microscopy (SEM). The effects of the addition of the specifically interacting tetrabuthylammonium cation were also investigated. From voltammetries, the formal potential, the nucleation potential and the cathodic current efficiency have been evaluated as a function of the mixed solvent composition. The key role on nucleation kinetics of transferring Ag+ from the bulk phase to the CH3CN-enriched electrode/solution interphase has been highlighted. CTT transients were described by a model combining instantaneous and progressive nucleation mechanisms. SEM images highlighted the effects of the presence of the organic solvent, which yields to a more regular growth, and of the quaternary ammonium salt, which exhibits grain-refining properties.


Mixed solvents Silver Acetonitrile Tetrabutylammonium perchlorate 



Expert assistance with electrochemical experiments and SEM imaging of Mr. Francesco Bogani and Mr. Donato Cannoletta (University of Lecce), respectively, are gratefully acknowledged. Intensive assistance with data elaboration of Mr. Damiano Laveneziana is gratefully acknowledged. The financial support of MUR (FIRST funds) is gratefully acknowledged. Moreover, the authors wish to express their gratitude to one of the referees for some insightful suggestions and comments that called our attention on some interesting aspect of our experimental data—that we had initially overlooked—allowing us to produce a considerably improved manuscript.


  1. 1.
    Elkington G, Elkington H (1840) Br Pat 8447Google Scholar
  2. 2.
    Dettke M (1991) Galvanotechnik 82:1238Google Scholar
  3. 3.
    Sadana YN, Wang SS, Wang ZZ (1988) Met Finish 86:37Google Scholar
  4. 4.
    de Oliveira GM, Barbosa LL, Broggi RL, Carlos IA (2005) J Electroanal Chem 578:151. doi: 10.1016/j.jelechem.2004.12.033 CrossRefGoogle Scholar
  5. 5.
    Popov KI, Pavlovic MG, Grgur BN, Dimitrov AT, Hadzi Jordanov S (1998) J Appl Electrochem 28:797. doi: 10.1023/A:1003450604118 CrossRefGoogle Scholar
  6. 6.
    Simon F, Kuhn W (2000) Galvanotechnik 91:2470Google Scholar
  7. 7.
    Evenepoel JC, Winand R (1970) Rev ATB Metab 10:132Google Scholar
  8. 8.
    Digard C, Maurin GR (1976) J Met Corros Ind 611:255Google Scholar
  9. 9.
    Vereeken J, Winand R (1976) J Electrochem Soc 123:643. doi: 10.1149/1.2132902 CrossRefGoogle Scholar
  10. 10.
    Zarkadas GM, Stergiou A, Papanastasiou G (2001) J Appl Electrochem 31:1251. doi: 10.1023/A:1012780022283 CrossRefGoogle Scholar
  11. 11.
    Galus Z (1995) In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering. VCH, Weinheim, pp 268–273Google Scholar
  12. 12.
    Chen R, Xu D, Gao G, Gui L (2004) Electrochim Acta 49:2243, doi: 10.1016/j.electacta.2004.01.004 CrossRefGoogle Scholar
  13. 13.
    Cao P, Gu R, Qiu L, Sun R, Ren B, Tian Z (2003) Surf Sci 531:217. doi: 10.1016/S0039-6028(03)00543-0 CrossRefGoogle Scholar
  14. 14.
    Doubova LM, Daolio S, Pagura C, De Battisti A, Trasatti S (2003) Russ J Electrochem 39(2):164. doi: 10.1023/A:1022308925322 CrossRefGoogle Scholar
  15. 15.
    Gu R, Cao P, Sun YH, Tian Z (2002) J Electroanal Chem 528:121. doi: 10.1016/S0022-0728(02)00898-7 CrossRefGoogle Scholar
  16. 16.
    Kuznetsov VV, Skibina LM, Loskutnikova IN (2000) Prot Metab 36(6):565. doi: 10.1023/A:1026633312361 CrossRefGoogle Scholar
  17. 17.
    Kuznetsov VV, Skibina LM, Loskutnikova IN, Alekseev YE (2001) Prot Metab 37(1):31, doi: 10.1023/A:1004881400861 CrossRefGoogle Scholar
  18. 18.
    Peng X, Xiang C, Xie Q, Kang Q, Yao S (2006) J Electroanal Chem 591:74. doi: 10.1016/j.jelechem.2006.03.025 CrossRefGoogle Scholar
  19. 19.
    Watanabe T (2004) Nano-Plating. Elsevier, TokyoGoogle Scholar
  20. 20.
    Ardizzone S, Cappelletti G, Mussini PR, Rondinini S, Doubova LM (2003) Russ J Electrochem 39(2):170. doi: 10.1023/A:1022361009393 CrossRefGoogle Scholar
  21. 21.
    Paunovic M (1987) In: Romankiw LT, Turner DR (eds) Proc Symp Electrodeposition technology, theory and practice, vol 87-17. The Electrochemical Society, New York, p 345Google Scholar
  22. 22.
    Miranda-Hernández M, Palomar-Pardavé M, Batina N, González I (1998) J Electroanal Chem 443:81. doi: 10.1016/S0022-0728(97)00487-7 CrossRefGoogle Scholar
  23. 23.
    Emery SB, Hubbley JL, Roy D (2004) J Electroanal Chem 568:121. doi: 10.1016/j.jelechem.2004.01.012 CrossRefGoogle Scholar
  24. 24.
    Ramírez C, Arce EM, Romero-Romo M, Palomar-Pardavé M (2004) Solid State Ion 169:81. doi: 10.1016/j.ssi.2004.01.023 CrossRefGoogle Scholar
  25. 25.
    Hyde ME, Jacobs RMJ, Compton RG (2004) J Electroanal Chem 562:61. doi: 10.1016/j.jelechem.2003.08.009 CrossRefGoogle Scholar
  26. 26.
    Hernández N, Ortega JM, Choy M, Ortiz R (2001) J Electroanal Chem 515:123. doi: 10.1016/S0022-0728(01)00619-2 CrossRefGoogle Scholar
  27. 27.
    Vargas T, Varma V (1991) In: Sarma R, Selman JR (Eds) Techniques for characterization of electrodes and electrochemical processes. Wiley, New York, pp 717–738Google Scholar
  28. 28.
    Palomar-Pardavé M, Ramírez MT, González I, Serruya A, Scharifker B (1998) J Electrochem Soc 143:1551. doi: 10.1149/1.1836678 CrossRefGoogle Scholar
  29. 29.
    Scharifker B, Hills G (1983) Electrochim Acta 28:879. doi: 10.1016/0013-4686(83)85163-9 CrossRefGoogle Scholar
  30. 30.
    Budevski E, Staikov GT, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, WeinheimCrossRefGoogle Scholar
  31. 31.
    Grujicic D, Pesic B (2002) Electrochim Acta 47:2901. doi: 10.1016/S0013-4686(02)00161-5 CrossRefGoogle Scholar
  32. 32.
    Palomar-Pardavé M, González I, Soto AB, Arce EM (1998) J Electroanal Chem 443:195. doi: 10.1016/S0022-0728(97)00496-8 CrossRefGoogle Scholar
  33. 33.
    Rondinini S, Mussini PR, Specchia M, Vertova A (2001) J Electrochem Soc 148:D102, doi: 10.1149/1.1379032 CrossRefGoogle Scholar
  34. 34.
    Fedurco M, Sartoretti CJ, Augustynski J (2001) Langmuir 17:2380. doi: 10.1021/la0013751 CrossRefGoogle Scholar
  35. 35.
    Sonoyama N, Ezaki K, Fujii H, Sakata T (2002) Electrochim Acta 47:3847. doi: 10.1016/S0013-4686(02)00324-9 CrossRefGoogle Scholar
  36. 36.
    Rondinini S, Vertova A (2004) Electrochim Acta 49:403. doi: 10.1016/j.electacta.2003.12.061 CrossRefGoogle Scholar
  37. 37.
    Isse AA, Gottardello S, Maccato C, Gennaro A (2006) Electrochem Commun 8:1707. doi: 10.1016/j.elecom.2006.08.001 CrossRefGoogle Scholar
  38. 38.
    Doherty AP, Koshechko V, Titov V, Mishura A (2007) J Electroanal Chem 602:91, doi: 10.1016/j.jelechem.2006.12.004 CrossRefGoogle Scholar
  39. 39.
    Litster S, McLean G (2004) J Power Sources 130:61. doi: 10.1016/j.jpowsour.2003.12.055 CrossRefGoogle Scholar
  40. 40.
    Kudryavtseva IV, Krumal’z BS, Mishchenko KP (1972) J Struct Chem 13:202. doi: 10.1007/BF00744485 CrossRefGoogle Scholar
  41. 41.
    Fletcher S, Lwin T (1983) Electrochim Acta 28:237. doi: 10.1016/0013-4686(83)85115-9 CrossRefGoogle Scholar
  42. 42.
    Fletcher S, Halliday CS, Gates D, Wescott M, Lwin T, Nelson G (1983) J Electroanal Chem 159:267. doi: 10.1016/S0022-0728(83)80627-5 CrossRefGoogle Scholar
  43. 43.
    Budevski EB (1983) In: Conway BE, Bockris J'OM, Yeager E, Kahn SUM, White RE (eds) Comprehensive treatise of electrochemistry, vol 7, Kinetics and mechanism of electrode processes. Plenum, New York, p 410Google Scholar
  44. 44.
    Wong KP, Chan KC, Yue TM (2001) Appl Surf Sci 178:178. doi: 10.1016/S0169-4332(01)00317-8 CrossRefGoogle Scholar
  45. 45.
    Broda J, Galus Z (1983) J Electroanal Chem 145:147. doi: 10.1016/S0022-0728(83)80300-3 CrossRefGoogle Scholar
  46. 46.
    Covington AK, Newman KE (1979) Pure Appl Chem 51:2041. doi: 10.1351/pac197951102041 CrossRefGoogle Scholar
  47. 47.
    Palomar-Pardavé M, Miranda-Hernández M, González I, Batina N (1998) Surf Sci 399:80. doi: 10.1016/S0039-6028(97)00813-3 CrossRefGoogle Scholar
  48. 48.
    Heerman L, Tarallo A (1998) J Electroanal Chem 451:101. doi: 10.1016/S0022-0728(98)00101-6 CrossRefGoogle Scholar
  49. 49.
    Heerman L, Tarallo A (1999) J Electroanal Chem 470:70, doi: 10.1016/S0022-0728(99)00221-1 CrossRefGoogle Scholar
  50. 50.
    Milchev A, Heerman L (2003) Electrochim Acta 48:2903. doi: 10.1016/S0013-4686(03)00355-4 CrossRefGoogle Scholar
  51. 51.
    Abyaneh MY (2006) J Electroanal Chem 586:196. doi: 10.1016/j.jelechem.2005.10.004 CrossRefGoogle Scholar
  52. 52.
    Scharifker BR, Mostany J (1984) J Electroanal Chem 177:13. doi: 10.1016/0022-0728(84)80207-7 CrossRefGoogle Scholar
  53. 53.
    Mele C, Bozzini B (2008) Silver electrodeposition from water–acetonitrile mixed solvents in the presence of tetrabutylammonium perchlorate. Part II—a SERS study of acetonitrile reactivity and tetrabutylammonium adsorption. J Solid State Electrochem doi: 10.1007/s10008-008-0724-y
  54. 54.
    Lombardi JR, Birke RL (2008) J Phys Chem C 112:5605. doi: 10.1021/jp800167v CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Claudio Mele
    • 1
    Email author
  • Sandra Rondinini
    • 2
  • Lucia D’Urzo
    • 1
  • Vincenzo Romanello
    • 1
  • Elisabetta Tondo
    • 1
  • Alessandro Minguzzi
    • 2
  • Alberto Vertova
    • 2
  • Benedetto Bozzini
    • 1
  1. 1.Dipartimento di Ingegneria dell’InnovazioneSalento University (formerly Lecce University)LecceItaly
  2. 2.Department of Physical Chemistry and ElectrochemistryUniversity of MilanMilanItaly

Personalised recommendations