Journal of Solid State Electrochemistry

, Volume 13, Issue 7, pp 1127–1140 | Cite as

Nanocomposite solar cells: the requirement and challenge of kinetic charge separation

  • Helmut Tributsch
Original Paper


Nanocrystalline solar cells promise significant advantages with respect to cost-efficient mass production, since they do not require imprinted chemical potential gradients for charge separation (e.g., electrical fields generated by p, n doping, which should last for one to three decades). They, however, require kinetic charge separation and chemical electronic mechanisms, which rectify photocurrents for energy conversion. Such mechanisms are presently not well understood, since the existing nanosolar cells (dye and polymer solar cells) have evolved largely empirically. It is shown in this paper that function and properties of kinetically determined solar cells can be derived from irreversible thermodynamic principles considering minimum entropy production (or the principle of least action) and involve solid-state electrochemical processes. Based on this model, presently studied nanosolar cells and also the primary photosynthetic mechanism are analyzed to identify the most significant physical–chemical factors involved.


Nanocomposite solar cells Dye solar cells Photosynthetic membrane Kinetic charge separation Irreversible thermodynamics 


  1. 1.
    Grätzel M (2003) J Photochem Photobiol C Photochem Rev 4:145 doi: 10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  2. 2.
    Sommerling PM, Späth M, Smit HJP, Bakker NJ, Kroon JM (2004) Photochem Photobiol A 164:137 doi: 10.1016/j.jphotochem.2003.12.017 CrossRefGoogle Scholar
  3. 3.
    Tributsch H (2004) Coord Chem Rev 284:1511 doi: 10.1016/j.ccr.2004.05.030 CrossRefGoogle Scholar
  4. 4.
    Gunes S, Sariciftci NS (2008) Inorg Chim Acta 361:581 doi: 10.1016/j.ica.2007.06.042 CrossRefGoogle Scholar
  5. 5.
    Jorgensen M, Norrman K, Krebs FC (2008) Sol Energy Mater Sol Cells 92:686 doi: 10.1016/j.solmat.2008.01.005 CrossRefGoogle Scholar
  6. 6.
    Barkschat A, Moehl T, Macht B, Tributsch H (2008) Int J Photoenergy. doi: 10.1155/2008/814951
  7. 7.
    Tributsch H (2006) CR Chimie 9:596Google Scholar
  8. 8.
    Meier H (1965) J Phys Chem 69:719 doi: 10.1021/j100887a003 CrossRefGoogle Scholar
  9. 9.
    Gerischer H, Michel-Beyerle ME, Rebentrost F, Tributsch H (1968) Electrochim Acta 13:1509 doi: 10.1016/0013-4686(68)80076-3 CrossRefGoogle Scholar
  10. 10.
    Tributsch H, Gerischer H (1969) Ber Bunsenges Phys Chem 73:850Google Scholar
  11. 11.
    Tributsch H (1968) An electrochemical technique for the study of spectral sensitization and of heterogeneous photochemical reactions on ZnO electrodes. PhD Thesis, Technical University MunichGoogle Scholar
  12. 12.
    Tributsch H, Calvin M (1971) Photochem Photobiol 14:95 doi: 10.1111/j.1751-1097.1971.tb06156.x CrossRefGoogle Scholar
  13. 13.
    Tributsch H (1972) Photochem Photobiol 16:261CrossRefGoogle Scholar
  14. 14.
    Tsubomura H, Matsumura M, Nomura Y, Amamya T (1976) Nature 261:402CrossRefGoogle Scholar
  15. 15.
    Alonso-Vante N, Beley M, Chartier P, Ern V (1981) Rev Phy Appl 16:5Google Scholar
  16. 16.
    Matsumura M, Matsudaira S, Tsubomura H, Takata M, Yanagida H (1980) Ind Eng Chem Prod Res Dev 19:4157 doi: 10.1021/i360075a025 CrossRefGoogle Scholar
  17. 17.
    O'Regan B, Grätzel M (1991) Nature 353:373 doi: 10.1038/353737a0 CrossRefGoogle Scholar
  18. 18.
    Yu G, Gao J, Hummelen JC, Wufl F, Heeger AJ (1995) Science 270:178 doi: 10.1126/science.270.5243.1789 CrossRefGoogle Scholar
  19. 19.
    Sariciftci NS, Heeger AJ (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, vol. 1. Wiley, New YorkGoogle Scholar
  20. 20.
    Bockris JO’M (1980) Energy options: real economics and the solar—hydrogen system. Australian und New Zealand Book Company, SydneyGoogle Scholar
  21. 21.
    Würfel P (2005) Physics of solar cells. from principles to new concepts. Wiley, WeinheimGoogle Scholar
  22. 22.
    Smestad G, Ries R (1992) Sol Energ Mater Sol Cells 25:51 doi: 10.1016/0927-0248(92)90016-I CrossRefGoogle Scholar
  23. 23.
    Luque A, Marty A (1997) Phys Rev B 55:6994 doi: 10.1103/PhysRevB.55.6994 CrossRefGoogle Scholar
  24. 24.
    Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New YorkGoogle Scholar
  25. 25.
    Pohlmann L, Tributsch H (1997) Electrochim Acta 42:2737 doi: 10.1016/S0013-4686(97)00078-9 CrossRefGoogle Scholar
  26. 26.
    Tributsch H, Pohlmann L (1995) J Electroanal Chem 396:53CrossRefGoogle Scholar
  27. 27.
    Tributsch H, Pohlmann L (1997) J Electroanal Chem 438:37CrossRefGoogle Scholar
  28. 28.
    Tributsch H, Pohlmann L (1998) Science 279:1891CrossRefGoogle Scholar
  29. 29.
    Hoff AJ (1984) Quart Rev Biophys 17:153CrossRefGoogle Scholar
  30. 30.
    Jeschke G, Matysik J (2003) Chem Phys 294:239CrossRefGoogle Scholar
  31. 31.
    Jeranko T, Tributsch H, Sariciftci NS, Hummelen JC (2004) Sol Energy Mater Sol Cells 83:247CrossRefGoogle Scholar
  32. 32.
    Rispen MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Chem Commun 17:2116CrossRefGoogle Scholar
  33. 33.
    Kuang D, Klein C, Ito S et al (2007) Adv Mater 19:1133CrossRefGoogle Scholar
  34. 34.
    Tributsch H (1994) Solar Energy Mater Solar Cells 31:548CrossRefGoogle Scholar
  35. 35.
    Tributsch H (1997) Catal Today 39:177CrossRefGoogle Scholar
  36. 36.
    Moehl T, Abd El Halim M, Tributsch H (2006) J Appl Electrochem 36:1341CrossRefGoogle Scholar
  37. 37.
    Thomalla M, Tributsch H (2006) J Phys Chem B 110:12167CrossRefGoogle Scholar
  38. 38.
    Sirimanne PM, Tributsch H (2003) J Solid State Chem 177:1789CrossRefGoogle Scholar
  39. 39.
    Nozik AJ (2002) Physica E 14:115CrossRefGoogle Scholar
  40. 40.
    Luque A, Marti A, Nozik AJ (2007) MRS Bulletin 32:236Google Scholar
  41. 41.
    Pohlmann L, Tributsch H (1992) J Theor Biol 155:443CrossRefGoogle Scholar
  42. 42.
    Pohlmann L, Tributsch H (1992) J Theor Biol 156:63CrossRefGoogle Scholar
  43. 43.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Rispens MT, Sanchez L, Hummelen JC, Fromherz T (2002) Thin Solid Films 403–404:368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Solare EnergetikHahn-Meitner-InstitutBerlinGermany

Personalised recommendations