Journal of Solid State Electrochemistry

, Volume 13, Issue 7, pp 1015–1024 | Cite as

Surface ECE mechanism in protein film voltammetry—a theoretical study under conditions of square-wave voltammetry

  • Rubin Gulaboski
Original Paper


For the first time, the features of a surface electron transfer–chemical reaction–electron transfer (ECE) mechanism, relevant to protein-film set-up, have been studied theoretically under conditions of square-wave voltammetry. The considered surface ECE mechanism is presented by following reaction scheme:\(A_{\left( {{\text{adsorbed}}} \right)} + ne^ - \rightleftarrows B_{\left( {{\text{adsorbed}}} \right)} + Y\xrightarrow{{k_{\text{f}} }}C_{\left( {{\text{adsorbed}}} \right)} + ne^ - \rightleftarrows D_{\left( {{\text{adsorbed}}} \right)} \). The mathematical solutions of this complex redox mechanism are given in form of integral equations, and they can be applied to any chronoamperometric technique. Attention is given to two frequently met situations: (a) case where the energy for the reduction in the second electron transfer step is lower or equal to that of the first reduction step and (b) case where the energy for the reduction of the second electron transfer step is much higher than that of the first reduction step. The theoretical square-wave voltammograms feature various shapes, depending mainly on the energy difference between the two electron transfer steps, but they also depend on the kinetics of the first and the second electron transfer, as well as on the rate of the chemical reaction. Hints are given for qualitative recognition of the surface ECE mechanism and for its distinguishing from similar surface redox systems. Reliable methods are proposed for the estimation of kinetic parameters of the electron transfer steps and that of the chemical reaction. Since many biological compounds undergo this redox mechanism, the theoretical results presented in this work can be of help for the people dealing with organic electrochemistry or protein-film voltammetry.


Square-wave voltammetry Surface ECE mechanism Protein-film voltammetry Kinetic characterization Mathematical modelling 



Rubin Gulaboski thanks Alexander von Humboldt Stiftung for providing a postdoctoral fellowship.

Supplementary material

10008_2008_665_MOESM1_ESM.doc (237 kb)
ESM 1 (DOC 237 KB).


  1. 1.
    Mirceski V, Komorsky-Lovric S, Lovric M (2007) Square-wave voltammetry. In: Scholz F (ed) Monographs in electrochemistry. Springer, BerlinGoogle Scholar
  2. 2.
    Gulaboski R, Mirceski V, Komorsky-Lovric S (2002) Electroanal 14:345. doi: 10.1002/1521-4109(200203)14:5<345::AID-ELAN345>3.0.CO;2-1 CrossRefGoogle Scholar
  3. 3.
    Mirceski V, Lovric M (1997) Electroanal 9:1283. doi: 10.1002/elan.1140091613 CrossRefGoogle Scholar
  4. 4.
    Mirceski V, Gulaboski R (2001) Electroanal 13:1326. doi: 10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S CrossRefGoogle Scholar
  5. 5.
    Mirceski V, Lovric M, Gulaboski R (2001) J Electroanal Chem 515:91. doi: 10.1016/S0022-0728(01)00609-X CrossRefGoogle Scholar
  6. 6.
    Mirceski V, Gulaboski R (2002) Mikrochim Acta 138:33. doi: 10.1007/s006040200005 Google Scholar
  7. 7.
    Armstrong FA, Lenaz G, Milazzo G (eds) (1997) in Bioelectrochemistry of Biomacromolecules. Birkhauser Verlag, Basel, SwitzerlandGoogle Scholar
  8. 8.
    Armstrong FA, Heering HA, Hirst J (1997) Chem Soc Rev 26:169. doi: 10.1039/cs9972600169 CrossRefGoogle Scholar
  9. 9.
    Fawcett SEJ, Davis D, Breton JL, Thomson AJ, Armstrong FA (1998) Biochem J 335:357Google Scholar
  10. 10.
    Leger C, Elliott SJ, Hoke KR, Jeuken LJC, Jones AK, Armstrong FA (2003) Biochemistry-Us 42:8653. doi: 10.1021/bi034789c CrossRefGoogle Scholar
  11. 11.
    Mirceski V, Gulaboski R (2003) J Solid State Electrochem 7:157Google Scholar
  12. 12.
    Gulaboski R, Mirceski V, Lovric M, Bogeski I (2005) Electrochem Commun 7:515. doi: 10.1016/j.elecom.2005.03.009 CrossRefGoogle Scholar
  13. 13.
    Yamamura T, Shirasaki K, Sato H, Nakamura Y, Tormiyasu H, Satoh I et al (2007) J Phys Chem C 111:18812. doi: 10.1021/jp077243z CrossRefGoogle Scholar
  14. 14.
    Komorsky-Lovric S, Lovric M (2007) Collect Czech Chem Commun 72:1398. doi: 10.1135/cccc20071398 CrossRefGoogle Scholar
  15. 15.
    O’Toole S, Pentlavalli S, Doherty AP (2007) J Phys Chem B 111:9281. doi: 10.1021/jp072394n CrossRefGoogle Scholar
  16. 16.
    Meng R, Weber SG (2007) J Electroanal Chem 600:325. doi: 10.1016/j.jelechem.2006.09.024 CrossRefGoogle Scholar
  17. 17.
    O’Dea JJ, Wikiel K, Osteryoung J (1990) J Phys Chem 94:3628. doi: 10.1021/j100372a049 CrossRefGoogle Scholar
  18. 18.
    Wilson GJ, Lin CY, Webster RD (2006) J Phys Chem B 110:11540. doi: 10.1021/jp0604802 CrossRefGoogle Scholar
  19. 19.
    Sanecki P, Skital P, Kaczmarski K (2006) Electroanal 18:981. doi: 10.1002/elan.200603487 CrossRefGoogle Scholar
  20. 20.
    Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinGoogle Scholar
  21. 21.
    Mirceski V, Gulaboski R (2003) Croat Chem Acta 76:37Google Scholar
  22. 22.
    Nicholson RS, Olmstead ML (1972) In: Mattson JS, Mark HB, MacDonald HC (eds) Electrochemistry: calculations, simulation and instrumentation. Marcel Dekker, New York, 2:120Google Scholar
  23. 23.
    O’Dea JJ, Osteryoung JG (1993) Anal Chem 65:3090. doi: 10.1021/ac00069a024 CrossRefGoogle Scholar
  24. 24.
    Komorsky-Lovric S, Lovric M (1995) Anal Chim Acta 305:248. doi: 10.1016/0003-2670(94)00455-U CrossRefGoogle Scholar
  25. 25.
    Gulaboski R, Lovric M, Mirceski V, Bogeski I, Hoth M (2008) Biophys Chem 137:49. doi: 10.1016/j.bpc.2008.06.011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Biophysics, Medical FacultySaarland UniversityHomburgGermany
  2. 2.Institut für Biophysik, Gebäude 58Universität des SaarlandesHomburg (Saar)Germany

Personalised recommendations