Journal of Solid State Electrochemistry

, Volume 14, Issue 4, pp 531–542 | Cite as

Characterisation of the electrochemical redox behaviour of Pt electrodes by potentiodynamic electrochemical impedance spectroscopy

  • G. A. Ragoisha
  • N. P. Osipovich
  • A. S. Bondarenko
  • J. Zhang
  • S. Kocha
  • A. Iiyama
Original Paper

Abstract

Multi-frequency ac responses of Pt in aqueous solutions of sulphuric and perchloric acids have been characterised in cycles of Pt oxide anodic formation and cathodic reduction as functions of electrode potential, using the two orders frequency range below 1 kHz, where the double layer responded jointly with Faradaic processes. The potentiodynamic impedance spectra were fitted to an equivalent circuit, which contained double-layer capacitance in parallel with charge transfer resistance, R, and constant phase element (CPE). Double-layer capacitance has shown minima (20–25 μF cm−2 in 0.5 M H2SO4 and 25–35 μF cm−2 in 1 M HClO4) in the double-layer region and more than twofold increase in the platinum oxidation region. R−1 and CPE have shown maxima in the regions of platinum oxidation and reduction. Potentiodynamic curves of raw impedance data were also self-descriptive in monitoring platinum oxidation and reduction in both solutions and in presence of chloride.

Keywords

Platinum Anodic oxide Potentiodynamic electrochemical impedance spectroscopy Double-layer capacitance 

References

  1. 1.
    Butler JAV, Pearson R (1938) Trans Faraday Soc 34:1163. doi:10.1039/tf9383401163 CrossRefGoogle Scholar
  2. 2.
    Burke LD (1986) In: Bockris JO’M, White RE, Conway BE (eds) Modem aspects of electrochemistry, vol 18, Chapter 4. Plenum, New YorkGoogle Scholar
  3. 3.
    Conway BE (1995) Prog Surf Sci 49:331. doi:10.1016/0079-6816(95)00040-6 CrossRefGoogle Scholar
  4. 4.
    Harrington DA (1997) J Electroanal Chem 420:101. doi:10.1016/S0022-0728(96)04813-9 CrossRefGoogle Scholar
  5. 5.
    Sun A, Franc J, MacDonald DD (2006) J Electrochem Soc 153:B260. doi:10.1149/1.2200156 CrossRefGoogle Scholar
  6. 6.
    Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park Y-S (2004) Electrochim Acta 49:1451Google Scholar
  7. 7.
    Alsabet M, Grden M, Jerkiewicz G (2006) J Electroanal Chem 589:120. doi:10.1016/j.jelechem.2006.01.022 CrossRefGoogle Scholar
  8. 8.
    Juodkazis K, Juodkazytė J, Juodienė T, Šukienė V, Savickaja I (2006) Electrochim Acta 51:6159. doi:10.1016/j.electacta.2006.01.071 CrossRefGoogle Scholar
  9. 9.
    Berná A, Climent V, Feliu JM (2007) Electrochem Commun 9:2789CrossRefGoogle Scholar
  10. 10.
    Garcia-Araez N, Climent V, Feliu JM (2008) J Solid State Electrochem 12:387. doi:10.1007/s10008-007-0417-y CrossRefGoogle Scholar
  11. 11.
    Jacob T (2007) J Electroanal Chem 607:158. doi:10.1016/j.jelechem.2007.03.023 CrossRefGoogle Scholar
  12. 12.
    Teliska M, O’Grady WE, Ramaker DE (2005) J Phys Chem B 109:8076. doi:10.1021/jp0502003 CrossRefGoogle Scholar
  13. 13.
    Viswanath RN, Kramer D, Weissmüller J (2008) Electrochim Acta 53:2757. doi:10.1016/j.electacta.2007.10.049 CrossRefGoogle Scholar
  14. 14.
    Makharia R, Kocha S, Yu PT, Sweikart MA, Gu W, Wagner FT et al (2006) ECS Trans 1(8):3. doi:10.1149/1.2214540 CrossRefGoogle Scholar
  15. 15.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N et al (2007) Chem Rev 107:3904. doi:10.1021/cr050182l CrossRefGoogle Scholar
  16. 16.
    Uchimura M, Kocha S (2007) ECS Trans. 11(1):1215. doi:10.1149/1.2781035 CrossRefGoogle Scholar
  17. 17.
    Shao Y, Yin G, Gao Y (2007) J Power Sources 171:558. doi:10.1016/j.jpowsour.2007.07.004 CrossRefGoogle Scholar
  18. 18.
    Wang X, Kumar R, Myers DJ (2006) Electrochem Solid-State Lett 9:A225. doi:10.1149/1.2180536 CrossRefGoogle Scholar
  19. 19.
    Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Top Catal 46:285. doi:10.1007/s11244-007-9000-0 CrossRefGoogle Scholar
  20. 20.
    Bi W, Fuller TF (2008) J Power Sources 178:188. doi:10.1016/j.jpowsour.2007.12.007 CrossRefGoogle Scholar
  21. 21.
    Łukaszewski M, Czerwiński A (2006) J Electroanal Chem 589:38. doi:10.1016/j.jelechem.2006.01.007 CrossRefGoogle Scholar
  22. 22.
    Yadav AP, Nishikata A, Tsuru T (2007) Electrochim Acta 52:7444. doi:10.1016/j.electacta.2007.06.029 CrossRefGoogle Scholar
  23. 23.
    Funtikov AM, Stimming U, Vogel RJ (1997) Electroanal Chem 428:147. doi:10.1016/S0022-0728(96)05051-6 CrossRefGoogle Scholar
  24. 24.
    Thomas S, Sung YE, Kim HS, Wieckowski A (1996) J Phys Chem 100:11726. doi:10.1021/jp9606321 CrossRefGoogle Scholar
  25. 25.
    Pajkossy T, Kolb DM (2001) Electrochim Acta 46:3063–3071. doi:10.1016/S0013-4686(01)00597-7 CrossRefGoogle Scholar
  26. 26.
    Pajkossy T, Kolb DM (2007) Electrochem Commun 9:1171. doi:10.1016/j.elecom.2007.01.002 CrossRefGoogle Scholar
  27. 27.
    Pell WG, Zolfaghari A, Conway BE (2002) J Electroanal Chem 532:13. doi:10.1016/S0022-0728(02)00676-9 CrossRefGoogle Scholar
  28. 28.
    Marian E, van der Geest ME, Dangerfield NJ, Harrington DA (1997) J Electroanal Chem 420:89. doi:10.1016/S0022-0728(96)04812-7 CrossRefGoogle Scholar
  29. 29.
    Ragoisha GA, Bondarenko AS (2005) Electrochim Acta 50:1553. doi:10.1016/j.electacta.2004.10.055 CrossRefGoogle Scholar
  30. 30.
    Ragoisha GA, Bondarenko AS (2005) In: Nunez M (ed) Electrochemistry: new research. Nova Science, New YorkGoogle Scholar
  31. 31.
    Ragoisha GA, Bondarenko AS (2003) Solid State Phenom 90-91:103CrossRefGoogle Scholar
  32. 32.
    Bondarenko AS, Ragoisha GA (2005) J Solid State Electrochem 9:845. doi:10.1007/s10008-005-0025-7 CrossRefGoogle Scholar
  33. 33.
    Ragoisha GA (2004-2008) Potentiodynamic Electrochemical Impedance Spectroscopy web pages.. doi:http://www.abc.chemistry.bsu.by/vi/
  34. 34.
    Schiewe J, Hazi J, Vicente-Beckett VA, Bond AM (1998) J Electroanal Chem 451:129. doi:10.1016/S0022-0728(97)00579-2 CrossRefGoogle Scholar
  35. 35.
    Ragoisha GA, Bondarenko AS (2003) Electrochem Commun 5:392. doi:10.1016/S1388-2481(03)00075-4 CrossRefGoogle Scholar
  36. 36.
    Ragoisha GA, Bondarenko AS, Osipovich NP, Streltsov EA (2004) J Electroanal Chem 565:227. doi:10.1016/j.jelechem.2003.10.014 CrossRefGoogle Scholar
  37. 37.
    Bondarenko AS, Ragoisha GA, Osipovich NP, Streltsov EA (2005) Electrochem Commun 7:631. doi:10.1016/j.elecom.2005.04.001 CrossRefGoogle Scholar
  38. 38.
    Ragoisha GA, Bondarenko AS, Osipovich NP, Rabchynski SM, Streltsov EA (2008) Electrochim Acta 53:3879. doi:10.1016/j.electacta.2007.09.017 CrossRefGoogle Scholar
  39. 39.
    Bondarenko AS, Ragoisha GA, Osipovich NP, Streltsov EA (2006) Electrochem Commun 8:921. doi:10.1016/j.elecom.2006.03.033 CrossRefGoogle Scholar
  40. 40.
    Trasatti S, Petrii OA (1992) J Electroanal Chem 327:353. doi:10.1016/0022-0728(92)80162-W CrossRefGoogle Scholar
  41. 41.
    Bondarenko AS, Ragoisha GA (2005) In: Pomerantsev AL (ed) Progress in chemometrics research. Nova Science, New YorkGoogle Scholar
  42. 42.
    Bondarenko AS, Ragoisha GA (2007) EIS spectrum analyzer.. doi:http://www.abc.chemistry.bsu.by/vi/analyser/
  43. 43.
    Garland JE, Pettit CM, Roy D (2004) Electrochim Acta 49:2623. doi:10.1016/j.electacta.2003.12.051 CrossRefGoogle Scholar
  44. 44.
    Sibert E, Faure R, Durand R (2001) Electrochem Commun 3:181. doi:10.1016/S1388-2481(01)00130-8 CrossRefGoogle Scholar
  45. 45.
    Kerner Z, Pajkossy T (2002) Electrochim Acta 47:2055. doi:10.1016/S0013-4686(02)00073-7 CrossRefGoogle Scholar
  46. 46.
    Noguchi H, Okada T, Uosaki K (2008) Electrochim Acta 53:6841. doi:10.1016/j.electacta.2008.02.094 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • G. A. Ragoisha
    • 1
  • N. P. Osipovich
    • 1
  • A. S. Bondarenko
    • 2
  • J. Zhang
    • 3
  • S. Kocha
    • 3
  • A. Iiyama
    • 3
  1. 1.Physico-Chemical Research InstituteBelarusian State UniversityMinskBelarus
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.Fuel Cell LaboratoryNissan Research CenterKanagawaJapan

Personalised recommendations