Journal of Solid State Electrochemistry

, Volume 13, Issue 8, pp 1227–1232 | Cite as

Thermal and dielectric properties of PEO/EC/Pr4N+I polymer electrolytes for possible applications in photo-electro chemical solar cells

  • T. M. W. J. BandaraEmail author
  • B.-E. Mellander
  • I. Albinsson
  • M. A. K. L. Dissanayake
  • H. M. J. C. Pitawala
Original Paper


The anion-conducting polymer electrolyte polyethylene oxide (PEO)/ethylene carbonate (EC)/Pr4N+I/I2 is a candidate material for fabricating photo-electrochemical (PEC) solar cells. Relatively high ionic conductivity values are obtained for the plasticized electrolytes; at room temperature, the conductivity increases from 7.6 × 10−9 to 9.5 × 10−5 S cm−1 when the amount of EC plasticizer increases from 0% to 50% by weight. An abrupt conductivity enhancement occurs at the melting of the polymer; above the melting temperature, the conductivity can reach values of the order of 10−3 S cm−1. The melting temperature decreases from 66.1 to 45.1 °C when the EC mass fraction is increased from 0% to 50%, and there is a corresponding reduction in the glass transition temperature from −57.6 to −70.9 °C with the incorporation of the plasticizer. The static dielectric constant values, \(\varepsilon _{\text{s}}^\prime \), increase with the mass fraction of plasticizer, from 3.3 for the unplasticized sample to 17.5 for the 50% EC sample. The dielectric results show only small traces of ion-pair relaxations, indicating that the amount of ion association is low. Thus, the iodide ion is well dissociated, and despite its large size and relatively low concentration in these samples, the iodide ion to ether oxygen ratio is 1:68, a relatively efficient charge carrier. A further enhancement of the ionic conductivity, especially at lower temperatures, is however desired for these applications.


PEC solar cells Polymer electrolyte Ionic conductivity Dielectric properties 



Research support from IRQUE project, Faculty of Applied Sciences, Rajarata University of Sri Lanka, IPPS and VR/SIDA Sweden are gratefully acknowledged.


  1. 1.
    Ritchie AG (2004) J Power Sources 136:285–289 doi: 10.1016/j.jpowsour.2004.03.013 CrossRefGoogle Scholar
  2. 2.
    Stephan AM (2006) Eur Polym J 42:21–42 doi: 10.1016/j.eurpolymj.2006.02.006 Google Scholar
  3. 3.
    Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander B-E (2003) J Power Sources 119–121:409–414 doi: 10.1016/S0378-7753(03)00262-3 CrossRefGoogle Scholar
  4. 4.
    Kim KH, Kang M, Kim YJ, Won J, Park N, Kang YS (2004) Chem Commun (Camb) 14:1662–1663 doi: 10.1039/b405215c CrossRefGoogle Scholar
  5. 5.
    Grätzel M (2003) J Photochem Photobiol Chem 4:145–153 doi: 10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  6. 6.
    Ileperuma OA, Dissanayake MAKL, Somasunderam S, Bandara LRAK (2004) J Sol Energy Mater Sol Cells 84:117 doi: 10.1016/j.solmat.2004.02.040 CrossRefGoogle Scholar
  7. 7.
    Volel M, Armand M (2004) Macromolecules 37:8373–8380 doi: 10.1021/ma0490404 CrossRefGoogle Scholar
  8. 8.
    Bandara TMWJ, Dissanayake MAKL, Ileperuma OA, Varaprathan K, Vignarooban K, Mellander B-E (2007) J Solid State Electrochem 12:913–917. doi: 10.1007/s10008-007-0461-7 Google Scholar
  9. 9.
    Tennakone K, Senadeera GKR, Perera VPS, Kottegoda IRM, Silva LAAD (1999) J Chem Mater 11:2474 doi: 10.1021/cm990165a CrossRefGoogle Scholar
  10. 10.
    Dissanayake MAKL, Bandara LRAK, Bokalawala RSP, Jayathilaka PARD, Ileperuma OA, Somasunderam S (2002) Mater Res Bull 37:867 doi: 10.1016/S0025-5408(02)00712-2 CrossRefGoogle Scholar
  11. 11.
    Lan Z, Wu J, Lin J, Huang M, Li P, Li Q (2008) Electrochim Acta 53:2296–2301 doi: 10.1016/j.electacta.2007.09.061 CrossRefGoogle Scholar
  12. 12.
    Huo Z, Dai S, Wang K, Kong F, Zhang C, Pan X et al (2007) Sol Energy Mater Sol Cells 91:1959–1965 doi: 10.1016/j.solmat.2007.08.003 CrossRefGoogle Scholar
  13. 13.
    Xue B, Wang H, Hu YS, Li H, Wang ZX, Meng QB et al (2004) Photochem Photobiol Sci 3:918 doi: 10.1039/b412647e CrossRefGoogle Scholar
  14. 14.
    Wang G, Zhou X, Li M, Zhang J, Kang J, Lin Y et al (2004) Mater Res Bull 39:2113–2118 doi: 10.1016/j.materresbull.2004.07.004 CrossRefGoogle Scholar
  15. 15.
    Wang XJ, Zhang HP, Kang JJ, Wu YP, Fang SB (2006) J Solid State Electrochem 11:21–26 doi: 10.1007/s10008-005-0029-3 CrossRefGoogle Scholar
  16. 16.
    Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JN, Rigaud P (1983) Solid State Ion 11:91–95 doi: 10.1016/0167-2738(83)90068-1 CrossRefGoogle Scholar
  17. 17.
    Mellander B-E, Albinsson I (1996) New Developments. In: Chowdari BVR (ed), Solid State Ionics, World Scientific Publishing Co. P. 83-95 and 97-115Google Scholar
  18. 18.
    Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E (2003) Solid State Ion 156:179–195 doi: 10.1016/S0167-2738(02)00616-1 CrossRefGoogle Scholar
  19. 19.
    Tunstall DP, Tomlin AS, Gray FM, MaccCallum JR, Vincent CA (1989) J Phys Condens Matter 1:4035–4045 doi: 10.1088/0953-8984/1/26/001 CrossRefGoogle Scholar
  20. 20.
    Mellander B-E, Albinsson I, Stevens JR (1994) Solid State Ion 72:177 doi: 10.1016/0167-2738(94)90144-9 CrossRefGoogle Scholar
  21. 21.
    Ramesh S, Yahaya AH, Arof AK (2002) Solid State Ion 152:291–294 doi: 10.1016/S0167-2738(02)00311-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. M. W. J. Bandara
    • 1
    • 2
    • 3
    Email author
  • B.-E. Mellander
    • 3
  • I. Albinsson
    • 4
  • M. A. K. L. Dissanayake
    • 1
  • H. M. J. C. Pitawala
    • 1
  1. 1.Department of Physics and Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  2. 2.Department of Physical SciencesRajarata University of Sri LankaMihintaleSri Lanka
  3. 3.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  4. 4.Department of PhysicsUniversity of GothenburgGöteborgSweden

Personalised recommendations