Nanoporous oxide formation by anodic oxidation of Nb in sulphate–fluoride electrolytes

  • Bogdan Tzvetkov
  • Martin Bojinov
  • Assen Girginov
Original Paper


The influence of hydrofluoric acid (HF) concentration and applied potential on the processes of anodic oxidation of Nb in sulphuric acid solution was studied by chronoamperometry, electrochemical impedance spectroscopy and scanning electron microscopy. During the first stage of the process, a compact barrier film is formed. On top of this film, a porous overlayer starts to form, then the nanopores grow into an ordered nanostructure. Subsequently, secondary 3D flower-shaped structures begin to form. These structures gradually spread all over the surface as an irregular multilayer film. The rates of the process of porous overlayer formation and subsequent growth of nanopore arrays increase with applied potential as well as with the HF concentration. The films have been characterised ex situ by electrochemical impedance spectroscopy at open circuit potential and capacitance vs. potential measurements to follow the different stages of nanoporous film formation with electrochemical methods. The impedance spectra and capacitance vs. potential curves have been interpreted using previously proposed models for the amorphous semiconductor/electrolyte interface. An attempt to rationalise the mechanism of nanoporous layer growth is presented by using the conceptual views of the mixed-conduction model and recent ideas for porous film formation on valve metals.


Niobium Nanoporous oxide Scanning electron microscopy Electrochemical impedance spectroscopy Capacitance measurements 



The funding of this work by the National Science Fund, Bulgarian Ministry of Education and Science, under contract ВУХ-307/2007 is gratefully acknowledged.


  1. 1.
    Yasuda K, Schmuki P (2007) Electrochim Acta 52:4053. doi: 10.1016/j.electacta.2006.11.023 CrossRefGoogle Scholar
  2. 2.
    Macak JM, Schmidt-Stein F, Schmuki P (2007) Electrochem Commun 9:1783. doi: 10.1016/j.elecom.2007.04.002 CrossRefGoogle Scholar
  3. 3.
    Bocchetta P, Conciauro F, Di Quarto F (2007) J Solid State Electrochem 11:1253. doi: 10.1007/s10008-007-0280-x CrossRefGoogle Scholar
  4. 4.
    Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2006) Electrochim Acta 52:681. doi: 10.1016/j.electacta.2006.05.054 CrossRefGoogle Scholar
  5. 5.
    Choi J, Lim J, Lee S, Chang J, Kim K, Cho M (2006) Electrochim Acta 51:5502. doi: 10.1016/j.electacta.2006.02.024 CrossRefGoogle Scholar
  6. 6.
    Rho S, Jahng D, Lim JH, Choi J, Chang J, Lee S et al (2008) Biosens Bioelectron 23:852. doi: 10.1016/j.bios.2007.09.001 CrossRefGoogle Scholar
  7. 7.
    Hutchings G, Taylor S (1999) Catal Today 49:105. doi: 10.1016/S0920-5861(98)00414-3 CrossRefGoogle Scholar
  8. 8.
    Barczuk P, Tsuchiya H, Macak J, Schmuki P, Szymanska D, Makowski O et al (2006) Electrochem Solid-State Lett 9:E13. doi: 10.1149/1.2190597 CrossRefGoogle Scholar
  9. 9.
    Varghese O, Gong D, Paulose M, Ong K, Dickey E, Grimes C (2003) Adv Mat Commun 15:624. doi: 10.1002/adma.200304586 CrossRefGoogle Scholar
  10. 10.
    Varghese O, Gong D, Paulose M, Ong K, Dickey E, Ong K et al (2003) Sensors Actuators B 93:338. doi: 10.1016/S0925-4005(03)00222-3 CrossRefGoogle Scholar
  11. 11.
    Varghese O, Grimes C (2003) J Nanosci Nanotechnol 3:277. doi: 10.1166/jnn.2003.158 CrossRefGoogle Scholar
  12. 12.
    Dickey E, Verghese O, Ong K, Gong D, Paulose M, Grimes C (2002) Sensors 2:91CrossRefGoogle Scholar
  13. 13.
    Zuruzi A, Kalmakov A, MacDonald N, Moskovits M (2006) Appl Phys Lett 88:102904. doi: 10.1063/1.2185247 CrossRefGoogle Scholar
  14. 14.
    Mor G, Carvalho M, Varghese O, Pishko M, Grimes C (2004) J Mater Res 19:628. doi: 10.1557/jmr.2004.19.2.628 CrossRefGoogle Scholar
  15. 15.
    Nowak ZM (1999) Chem Rev 99:3603. doi: 10.1021/cr9800208 CrossRefGoogle Scholar
  16. 16.
    Sieber I, Hildebrand H, Friedrich A, Schmuki P (2005) Electrochem Commun 7:97. doi: 10.1016/j.elecom.2004.11.012 CrossRefGoogle Scholar
  17. 17.
    Tzvetkov B, Bojinov M, Girginov A (2006) In: Balabanova E, Dragieva I (eds) Nanoscience & nanotechnology 6. pp 86–90Google Scholar
  18. 18.
    Tzvetkov B, Bojinov M, Girginov A, Pébère N (2007) Electrochim Acta 52:7724. doi: 10.1016/j.electacta.2006.12.034 CrossRefGoogle Scholar
  19. 19.
    Di Quarto F, Piazza S, Sunseri C (1990) Corros Sci 31:267. doi: 10.1016/0010-938X(90)90118-O CrossRefGoogle Scholar
  20. 20.
    Burstein GT, Davenport AJ (1989) J Electrochem Soc 136:936. doi: 10.1149/1.2096890 CrossRefGoogle Scholar
  21. 21.
    Karlinsey R (2005) Electrochem Commun 7:1190. doi: 10.1016/j.elecom.2005.08.027 CrossRefGoogle Scholar
  22. 22.
    Zhao J, Wang X, Xu R, Mi Y, Lia Y (2007) Electrochem Solid-State Lett 10:C31. doi: 10.1149/1.2458528 CrossRefGoogle Scholar
  23. 23.
    Nagahara K, Sakairi M, Takahashi H, Matsumoto K, Takayama K, Oda Y (2007) Electrochim Acta 52:2134. doi: 10.1016/j.electacta.2006.08.030 CrossRefGoogle Scholar
  24. 24.
    Di Quarto F, La Mantia F, Santamaria M (2005) Electrochim Acta 50:5090. doi: 10.1016/j.electacta.2005.03.065 CrossRefGoogle Scholar
  25. 25.
    Di Quarto F, La Mantia F, Santamaria M (2007) Corros Sci 49:186. doi: 10.1016/j.corsci.2006.05.019 CrossRefGoogle Scholar
  26. 26.
    Gomes WP, Vanmaekelbergh D (1996) Electrochim Acta 41:967. doi: 10.1016/0013-4686(95)00427-0 CrossRefGoogle Scholar
  27. 27.
    Cohen JD, Lang DV (1982) Phys Rev B 25:5321. doi: 10.1103/PhysRevB.25.5321 CrossRefGoogle Scholar
  28. 28.
    Di Quarto F, Piazza S, Sunseri C (1990) Electrochim Acta 35:99. doi: 10.1016/0013-4686(90)85045-O CrossRefGoogle Scholar
  29. 29.
    Cattarin S, Musiani M, Tribollet B (2002) J Electrochem Soc 149:B457. doi: 10.1149/1.1502690 CrossRefGoogle Scholar
  30. 30.
    Bojinov M, Cattarin S, Musiani M, Tribollet B (2003) Electrochim Acta 48:4107. doi: 10.1016/S0013-4686(03)00578-4 CrossRefGoogle Scholar
  31. 31.
    Munoz AG (2007) Electrochim Acta 52:4167. doi: 10.1016/j.electacta.2006.11.035 CrossRefGoogle Scholar
  32. 32.
    Munoz AG, Chen Q, Schmuki P (2007) J Solid State Electrochem 11:1077. doi: 10.1007/s10008-006-0241-9 CrossRefGoogle Scholar
  33. 33.
    Taveira L, Sagues AA, Macak JM, Schmuki P (2008) J Electrochem Soc 155:C293. doi: 10.1149/1.2898503 CrossRefGoogle Scholar
  34. 34.
    Munoz AG, Staikov G (2006) J Solid State Electrochem 10:329. doi: 10.1007/s10008-005-0090-y CrossRefGoogle Scholar
  35. 35.
    Modestov AD, Davydov AD (1999) J Electroanal Chem 460:214. doi: 10.1016/S0022-0728(98)00378-7 CrossRefGoogle Scholar
  36. 36.
    Raja KS, Misra M, Paramguru K (2005) Electrochim Acta 51:154. doi: 10.1016/j.electacta.2005.04.011 CrossRefGoogle Scholar
  37. 37.
    Yasuda K, Macak J, Berger S, Ghicov A, Schmuki P (2007) J Electrochem Soc 154:C472. doi: 10.1149/1.2749091 CrossRefGoogle Scholar
  38. 38.
    Chao C, Lin L, Macdonald D (1981) J Electrochem Soc 128:1187. doi: 10.1149/1.2127591 CrossRefGoogle Scholar
  39. 39.
    Macdonald DD (1992) J Electrochem Soc 139:3434. doi: 10.1149/1.2069096 CrossRefGoogle Scholar
  40. 40.
    Bojinov M, Fabricius G, Kinnunen P, Laitinen T, Makela K, Saario T et al (2001) J Electroanal Chem 504:29. doi: 10.1016/S0022-0728(01)00423-5 CrossRefGoogle Scholar
  41. 41.
    Wang M, Hebert K (1999) J Electrochem Soc 146:3741. doi: 10.1149/1.1392543 CrossRefGoogle Scholar
  42. 42.
    Bojinov M (1997) Electrochim Acta 42:3489. doi: 10.1016/S0013-4686(97)00037-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bogdan Tzvetkov
    • 1
  • Martin Bojinov
    • 1
  • Assen Girginov
    • 1
  1. 1.Department of Physical ChemistryUniversity of Chemical Technology and MetallurgySofiaBulgaria

Personalised recommendations