Corrosion and passivity of metals in methanol solutions of electrolytes

  • J. BanaśEmail author
  • B. Stypuła
  • K. Banaś
  • J. Światowska-Mrowiecka
  • M. Starowicz
  • U. Lelek-Borkowska
Original Paper


Electrochemical and corrosion behaviour of metals in alcohols are the subject of numerous investigations because of the application of mentioned solvents in chemical engineering, production of oxide nanoparticles (sol-gel techniques) and application of alcohols as fuels. Despite relatively rich bibliography related to electro-catalytic oxidation of alcohols on metal surface in mixed aqueous–alcohol solutions, the knowledge of the mechanism of reactions on metal/anhydrous alcohol interface is still not sufficient. Anodic oxidation of metal surface in alcohol leads to several electro-catalytic reactions with formation of surface compounds being the product of metal and alcohol oxidation. Identification of these products is very difficult. Therefore, our knowledge of the composition and structure of passive films or corrosion products on metal surface in anhydrous alcohol solvents is poor. Our paper presents the investigations of anodic behaviour of metals (Cu, Zn, Fe, Ni, Al and Ti) and semiconductors (p-Si) in methanol solutions of electrolytes, performed in our laboratory within the last 10 years. On the base of electrochemical measurements (linear sweep voltammetry, electrochemical impedance spectroscopy), spectroscopic investigations (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and low-energy electron diffraction) and scanning electron microscopy techniques, the role of metal–alcohol intermediates in the formation of surface and soluble compounds is discussed. The practical application of electrochemical etching of metals as a method of production of micro- and nanoparticles of metals and oxides is also shown.


Corrosion Passivation Alcohols 



This study was supported by Polish Ministry of Science and Higher Education, project no,


  1. 1.
    Banas J (1982) Z Phys Chem 262(6):1105Google Scholar
  2. 2.
    Banas J (1982) Corr Sci 22(11):1005CrossRefGoogle Scholar
  3. 3.
    Banas J (1982) Electrochim Acta 27(8):1141CrossRefGoogle Scholar
  4. 4.
    Banas J (1982) Corr Sci 22:997CrossRefGoogle Scholar
  5. 5.
    de Anna PL (1985) Corr Sci 25(1):43CrossRefGoogle Scholar
  6. 6.
    Bellucci F, Farina CA, Faita G (1981) Electrochim Acta 26:731CrossRefGoogle Scholar
  7. 7.
    Heitz E (1974) Adv Corr Sci Technol 4Google Scholar
  8. 8.
    Nicola M, Constantinescu M, Badea T (1978) Rev Chim 29(2):156Google Scholar
  9. 9.
    Brossia CS, Gileadi E, Kelly RG (1995) Corr Sci 37(9):1455CrossRefGoogle Scholar
  10. 10.
    Jekilin WW, Grigoriev WP (2002) Zaszcz Mietall 38(2):146Google Scholar
  11. 11.
    Banas J (1987) Electrochim Acta 32(6):871CrossRefGoogle Scholar
  12. 12.
    Banas J, Schütze K-G, Heitz E (1986) J Electrochem Soc 133(2):253CrossRefGoogle Scholar
  13. 13.
    Swiatowska-Mrowiecka J, Banas J (2005) Electrochim Acta 50:1829CrossRefGoogle Scholar
  14. 14.
    Siewiorek A, Banas J (2002) Ochr przed Korozją 11A:590Google Scholar
  15. 15.
    Swiatowska-Mrowiecka J, Banas J (2002) Ochr przed Korozją 11A:595Google Scholar
  16. 16.
    Lelek-Borkowska U, Banas J (2002) Electrochim Acta 47:1121CrossRefGoogle Scholar
  17. 17.
    Banaś K, Banas J (1996) Mechanisms of localized corrosion OR 8–1. In Proc. of Eurocorr’ 96, NiceGoogle Scholar
  18. 18.
    Banas J (1995) Mat Sci Forum 185–188:845CrossRefGoogle Scholar
  19. 19.
    Banas J, Mazurkiewicz B, Solarski W, Banas K (1995) Mat Sci Forum 185–188:871CrossRefGoogle Scholar
  20. 20.
    Stypula B, Banas J (1994) Modification of passive film. In: Marcus Ph, Baroux B, Keddam M (ed) The Institute of Materials, London, p 123Google Scholar
  21. 21.
    Stypula B (1995) Mat Sci Forum 185–188:897CrossRefGoogle Scholar
  22. 22.
    Sendner Ch, Sakong S, Groß A (2006) Surf Sci 600:3258CrossRefGoogle Scholar
  23. 23.
    Anders HE, Gardnem P, King DA (1994) Chem Phys Let 231:481CrossRefGoogle Scholar
  24. 24.
    Belanger G (1976) J Electrochem Soc 123:818CrossRefGoogle Scholar
  25. 25.
    Vassilyev Y, Lotvin BM (1985) Electrochim Acta 30:1354Google Scholar
  26. 26.
    Kokkinidis G, Papanastasiou G (1987) J Electroanal Chem 221:175CrossRefGoogle Scholar
  27. 27.
    Iwakura C, Hayashi T, Kikkawa S, Tamura H (1972) Electrochim Acta 17:1085CrossRefGoogle Scholar
  28. 28.
    Lorenz WJ, Heusler KE (1987) Anodic dissolution of iron group metals. In: Mansfeld F (ed) Corrosion mechanisms, Marcel Dekker, New YorkGoogle Scholar
  29. 29.
    Keddam M (2002) Anodic dissolution. In: Marcus Ph, Oudar J (eds) Corrosion mechanisms in theory and practice. 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  30. 30.
    Swiatowska-Mrowiecka J (2003) PhD Thesis, Mechanism and kinetics of zinc corrosion in organic solvents, in polish, AGH, CracowGoogle Scholar
  31. 31.
    Banas K, Banas J (1996) Proc of the EUROCORR 96, Session VIII, p 8–1Google Scholar
  32. 32.
    Stypula B, Banas J, Starowicz M, Krawiec H, Bernasik A, Janas A (2006) J Appl Electrochem 36:1407CrossRefGoogle Scholar
  33. 33.
    Sakong S, Groß A (2005) J Catal 231:420CrossRefGoogle Scholar
  34. 34.
    Banas K, Banas J (1997) Mat Symp Nauk-Techn “Nowe osiągnięcia w badaniach i inżynierii korozyjnej” Poraj, p 26Google Scholar
  35. 35.
    Sakakibara M, Saito N, Nishihara H, Arami K (1993) Corr Sci 34:391CrossRefGoogle Scholar
  36. 36.
    Kawai T, Nishibara H, Arakami K (1995) Corr Sci 37:823CrossRefGoogle Scholar
  37. 37.
    Sakakibara M, Nishihara H, Arami K (1993) Corr Sci 34:1937CrossRefGoogle Scholar
  38. 38.
    Umebayashi R, Akao N, Hara N, Sugimoto K (2002) J Electrochem Soc 149:B75CrossRefGoogle Scholar
  39. 39.
    Banas K, Banas J (2004) Anodic dissolution of Ni, Al and intermetallic phase Ni3Al in CH3OH–LiCl system. In: Proc 55th Annual Meeting of ISE 2004 Thessaloniki, Greece, p 809Google Scholar
  40. 40.
    Siewiorek A, Banas J (2003) Corrosion of aluminum monocrystals in organic solutions. In: Proc of EUROCORR 2003, BudapestGoogle Scholar
  41. 41.
    Banas K, Banas J (2006) Ochr przed Korozją 49(11s/A):28–32Google Scholar
  42. 42.
    Siewiorek A (2004) Kinetics and mechanism of corrosion of aluminum in organic environments. PhD Thesis, AGH Cracow (in polish)Google Scholar
  43. 43.
    Banas K, Starowicz M, Stypula B, Banas J (2006) Ochr przed Korozją 49(11s/A):15Google Scholar
  44. 44.
    Banas K, Banas J (2003) Metall Foundry Eng 29(2):123Google Scholar
  45. 45.
    Banas K, Banas J (2003) Corrosion of titanium in methanol solution of chlorides. In: Zakroczymski T. (ed) Proc Michal Smialowski Symp on Corrosion and Hydrogen Degradation, ZakopaneGoogle Scholar
  46. 46.
    Francis SM, Leisble FM, Haq S, Xiang N, Bowker M (1994) Surf Sci 315:284CrossRefGoogle Scholar
  47. 47.
    Gercher VA, Cox DF, Themlin J-M (1994) Surf Sci 306:279CrossRefGoogle Scholar
  48. 48.
    Morallon E, Rodes A, Vazquez JL, Perez JM (1995) J Electroanal Chem 391:149CrossRefGoogle Scholar
  49. 49.
    Leiva EPM, Giordano MC (1983) J Electrochem Soc 130:1305CrossRefGoogle Scholar
  50. 50.
    Banas J, Lelek-Borkowska U, Starowicz M (2004) J Solid State Electrochem 8(6):422CrossRefGoogle Scholar
  51. 51.
    Starowicz M, Stypula B (2008) Eur J Inorg Chem 2:869CrossRefGoogle Scholar
  52. 52.
    Starowicz M, Sojka A, Stypula B (2007) Arch Mat Sci Eng 28(10):609Google Scholar
  53. 53.
    Starowicz M, Stypula B, Banas J (2006) Electrochem Comm 8:227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. Banaś
    • 1
    Email author
  • B. Stypuła
    • 1
  • K. Banaś
    • 2
  • J. Światowska-Mrowiecka
    • 1
  • M. Starowicz
    • 1
  • U. Lelek-Borkowska
    • 1
  1. 1.Department of Chemistry and Corrosion of Metals, Faculty of Foundry EngineeringAGH–University of Science and TechnologyCracowPoland
  2. 2.Department of Physical Chemistry and Electrochemistry, Faculty of Non-Ferrous MetalsAGH–University of Science and TechnologyCracowPoland

Personalised recommendations