Advertisement

Journal of Solid State Electrochemistry

, Volume 13, Issue 8, pp 1209–1214 | Cite as

Improved performance of Bi2O3-doped MnO2 cathode on rechargeability in LiOH aqueous cell

  • Manickam MinakshiEmail author
Original Paper

Abstract

Many attempts have been made to make the zinc-manganese dioxide (Zn-MnO2) alkaline cell rechargeable, but all investigations are pertained to the proton insertion mechanism into MnO2. In this paper, a new class of rechargeable bismuth oxide-doped MnO2 electrode in lithium hydroxide (LiOH) electrolyte is described. The doping and the appropriate pH selection of the aqueous electrolyte improved the electrochemical performance of the aqueous cell. Hence, with an aim to understand the role of bismuth oxide (Bi2O3) during the discharge process, doped MnO2 cathodes are characterized by various techniques like secondary ion mass spectrometry, X-ray diffraction, Fourier transform infra-red spectroscopy, and transmission electron microscopy analysis. The results suggest that the influence of the large radius of the cation (Bi2O3; Bi (III) ion (0.96 Å)) cannot be integrated into the spinel structure, thereby, improving the rechargeability. The electrode reaction of doped MnO2 in LiOH electrolyte is shown to be lithium insertion while preventing the formation of a spinel structure that leads to a major formation of manganese oxy hydroxides.

Keywords

Rechargeability Aqueous battery LiOH SIMS Bi2O3 

Notes

Acknowledgements

The author would like to thank the Australian Nuclear Science and Engineering for providing financial assistance (AINGRA award 08048) to enable work on SIMS facilities at Australian Nuclear Science and Technology Organization.

References

  1. 1.
    Fritsch S, Navrotsky A (1996) J Am Ceram Soc 79:1761, doi: 10.1111/j.1151-2916.1996.tb07993.x CrossRefGoogle Scholar
  2. 2.
    MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) J Power Sources 108:8, doi: 10.1016/S0378-7753(01)01013-8 CrossRefGoogle Scholar
  3. 3.
    Greenwood NN, Earnshaw A (1984) Chemistry of the Elements, 1st edn. Pergamon, OxfordGoogle Scholar
  4. 4.
    Boden D, Venuto CJ, Wisler D, Wylie RB (1968) J Electrochem Soc 115:333, doi: 10.1149/1.2411182 CrossRefGoogle Scholar
  5. 5.
    Sajdl B, Micka K, Krtil P (1995) Electrochim Acta 40:2005, doi: 10.1016/0013-4686(94)E0163-T CrossRefGoogle Scholar
  6. 6.
    McBreen J (1975) Electrochim Acta 20:221, doi: 10.1016/0013-4686(75)85028-6 CrossRefGoogle Scholar
  7. 7.
    Im D, Manthiram A, Coffey B (2003) J Electrochem Soc 150:1651, doi: 10.1149/1.1622960 CrossRefGoogle Scholar
  8. 8.
    Kordesch K, Weissenbacher M (1994) J Power Sources 51:61, doi: 10.1016/0378-7753(94)01955-X CrossRefGoogle Scholar
  9. 9.
    Mondolini C, Laborde M, Rioux J, Andoni E, Levy-clement C (1992) J Electrochem Soc 139:954, doi: 10.1149/1.2069374 CrossRefGoogle Scholar
  10. 10.
    Kozawa A, Powers RA (1996) J Electrochem Soc 113:870, doi: 10.1149/1.2424145 CrossRefGoogle Scholar
  11. 11.
    Minakshi M, Singh P, Issa TB, Thurgate S, DeMarco R (2004) J Power Sources 130:254, doi: 10.1016/j.jpowsour.2003.12.018 CrossRefGoogle Scholar
  12. 12.
    Minakshi M, Mitchell DRG (2008) Electrochim Acta 53:6323, doi: 10.1016/j.electacta.2008.04.013 CrossRefGoogle Scholar
  13. 13.
    Minakshi M, Singh P, Carter M, Prince K (2008) Electrochem Solid-State Lett 11:145, doi: 10.1149/1.2932056 CrossRefGoogle Scholar
  14. 14.
    Bach S, Ramos JPP, Baffier N, Messina R (1995) Electrochim Acta 40:785, doi: 10.1016/0013-4686(94)E0170-5 CrossRefGoogle Scholar
  15. 15.
    Ghavami RK, Rafiei Z, Tabatabaei SM (2007) J Power Sources 164:934, doi: 10.1016/j.jpowsour.2006.10.084 CrossRefGoogle Scholar
  16. 16.
    Wroblowa HS, Gupta N (1987) J Electroanal Chem 238:93, doi: 10.1016/0022-0728(87)85167-7 CrossRefGoogle Scholar
  17. 17.
    Gao YF, Gupta N, Wroblowa HS (1987) J Electroanal Chem 238:107Google Scholar
  18. 18.
    Kordesch K, Gsellmann J, Peri M, Tomantschger K, Chemelli R (1981) Electrochim Acta 26:1495, doi: 10.1016/0013-4686(81)90021-9 CrossRefGoogle Scholar
  19. 19.
    Raghuveer V, Manthiram A (2005) Electrochem Commun 7:1329, doi: 10.1016/j.elecom.2005.09.012 CrossRefGoogle Scholar
  20. 20.
    Novak A (1974) Struct Bonding, Berlin 18:177–216CrossRefGoogle Scholar
  21. 21.
    Wu YT, Hu CC (2005) Electrochem Solid-State Lett 8:A240, doi: 10.1149/1.1874673 CrossRefGoogle Scholar
  22. 22.
    Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) J Electrochem Soc 134:1611, doi: 10.1149/1.2100722 CrossRefGoogle Scholar
  23. 23.
    Qu D, Diehl D, Conway BE, Pell WG, Qian SY (2005) J Appl Electrochem 35:1111, doi: 10.1007/s10800-005-9005-y CrossRefGoogle Scholar
  24. 24.
    Kannan AM, Bhavaraju S, Prado F, Manivel Raja M, Manthiram A (2002) J Electrochem Soc 149:483, doi: 10.1149/1.1459713 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Extractive Metallurgy ad chemistryMurdoch UniversityMurdochAustralia

Personalised recommendations