Surface chemistry and electronics of semiconductor–nanosystem junctions II: enzyme immobilization, charge transport aspects and scanning probe microscopy imaging

  • H. J. Lewerenz
  • K. Skorupska
  • J. R. Smith
  • S. A. Campbell


Photoelectrochemically prepared and vapor-phase-induced surface nanotopographies are used for immobilization of enzymes at specific surface sites. The specific nanostructure of step-bunched silicon where the step edges are negatively charged and that of MoTe2, characterized by negatively charged triangular growth defects, are successfully employed for enzyme immobilization. It is shown that, at pH values below the isoelectric point of the enzyme reverse transcriptase (RT), electrostatic interaction via the Debye length of 3–4 nm and the shorter ranged van der Waals attraction superimpose for enzyme adsorption at negatively charged surface sites. Scanning tunneling microscopy (STM) images of reverse transcriptases deposited onto the layered semiconductor MoTe2 are interpreted in analogy to semiconductor–insulator–metal (MIS) device physics by analyzing the electronic properties of the junction between Pt tip (metal), biomolecule (insulator), and n-MoTe2 (semiconductor). The uninhibited current flow in constant-current STM experiments is tentatively interpreted by salvation-assisted detrapping of electrons along the circumference of the proteins where biological water is present. Imaging of the RTs on step-bunched silicon surfaces with tapping mode atomic force microscopy shows spatially selective deposition at negatively charged step edges.


Protein Immobilization Semiconductor Scanning probe microscopy Charge transport 


  1. 1.
    Engel A (1991) Annu Rev Biophys Biophys Chem 20:79 doi: 10.1146/ CrossRefGoogle Scholar
  2. 2.
    Baro AM, Miranda R, Alaman J, Garcia N, Binig G et al (1985) Nature 315:253 doi: 10.1038/315253a0 CrossRefGoogle Scholar
  3. 3.
    Miles MJ, Carr HJ, McMaster TC, Tatham AS et al (1991) Proc Natl Acad Sci U S A 88:68 doi: 10.1073/pnas.88.1.68 CrossRefGoogle Scholar
  4. 4.
    Lindsay S, Thundat T, Nagahara L, Knipping U, Rill R (1989) Science 244:1063 doi: 10.1126/science.2727694 CrossRefGoogle Scholar
  5. 5.
    Lewerenz HJ, Jungblut H, Campbell SA, Müller DJ (1992) AIDS Res Hum Retrovir 8:1663CrossRefGoogle Scholar
  6. 6.
    Jungblut H, Campbell SA, Giersig M, Müller DJ, Lewerenz HJ (1992) Faraday Discuss 94:183 doi: 10.1039/fd9929400183 CrossRefGoogle Scholar
  7. 7.
    Guckenberger R, Heim M, Cevc G, Knapp HF, Wiegrabe W, Hillebrand A (1994) Science 266:1538CrossRefGoogle Scholar
  8. 8.
    Heim M, Steigerwald M, Guckenberger R (1997) J Struct Biol 119:212CrossRefGoogle Scholar
  9. 9.
    Yin F, Shin H-Kand Kwon Y-S (2005) Biosens Bioelectron 21:21 doi: 10.1016/j.bios.2005.04.014 CrossRefGoogle Scholar
  10. 10.
    Neves-Petersen MT, Snabe T, Klitgaard S, Duroux M, Petersen SB (2005) SB. Protein Sci 15:343 doi: 10.1110/ps.051885306 CrossRefGoogle Scholar
  11. 11.
    Boozer C, Ladd J, Chen S, Jiang S (2006) Anal Chem 78:1515 doi: 10.1021/ac051923l CrossRefGoogle Scholar
  12. 12.
    Conan A, Bonnet A, Arnrouche A, Spiesser M (1984) J Phys Fr 45:459 doi: 10.1051/jphys:01984004503045900 CrossRefGoogle Scholar
  13. 13.
    Skorupska K, Lublow M, Kanis M, Jungblut H, Lewerenz HJ (2005) Appl Phys Lett 87:262101 doi: 10.1063/1.2150267 CrossRefGoogle Scholar
  14. 14.
    Skorupska K, Lublow M, Kanis M, Jungblut H, Lewerenz HJ (2005) Electrochem Commun 7:1077 doi: 10.1016/j.elecom.2005.07.012 CrossRefGoogle Scholar
  15. 15.
    Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Science 256:1783 doi: 10.1126/science.1377403 CrossRefGoogle Scholar
  16. 16.
    Campbell SA, Smith JR, Jungblut H, Lewerenz HJ (2007) J Electroanal Chem 599:313 doi: 10.1016/j.jelechem.2006.05.035 CrossRefGoogle Scholar
  17. 17.
    Derjarguin BV, Landau L (1941) Acta Physico-Chimica 14:633 (URSS)Google Scholar
  18. 18.
    Verwey EJ, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Grasso D, Subramanian K, Butkus M, Strevett K, Bergendahl J (2002) Rev Environ Sci Biotechnol 1:17 doi: 10.1023/A:1015146710500 CrossRefGoogle Scholar
  20. 20.
    Petsev DN, Vekilov PG (2000) Phys Rev Lett 84:1339 doi: 10.1103/PhysRevLett.84.1339 CrossRefGoogle Scholar
  21. 21.
    Israelachvili JN (1992) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  22. 22.
    Lewerenz HJ, Gerischer H, Lübke M (1984) J Electrochem Soc 131:100 doi: 10.1149/1.2115467 CrossRefGoogle Scholar
  23. 23.
    Skorupska K, Smith JR, Campbell SA, Jungblut H, Lewerenz HJ (2007) ECS Trans 2:63 doi: 10.1149/1.2409009 CrossRefGoogle Scholar
  24. 24.
    Jacobo-Molina A, Ding J, Nanni RG, Clark AD, Lu X Jr, Tantillo C et al (1993) Proc Natl Acad Sci U S A 90:6320 doi: 10.1073/pnas.90.13.6320 CrossRefGoogle Scholar
  25. 25.
    Garcia S, Bao H, Hines MA (2004) Phys Rev Lett 93:166102 doi: 10.1103/PhysRevLett.93.166102 CrossRefGoogle Scholar
  26. 26.
    Müller B, Restle T, Kühnel H, Goody RS (1991) J Biol Chem 266:14709Google Scholar
  27. 27.
    Starnes MC, Cheng YC (1989) J Biol Chem 264:7073Google Scholar
  28. 28.
    Skasko M, Weiss KK, Reynolds HM, Jamburuthugoda V, Lee K, Kim B (2005) J Biol Chem 280:12190 doi: 10.1074/jbc.M412859200 CrossRefGoogle Scholar
  29. 29.
    Charneau P, Clavel F (1991) J Virol 65:2415Google Scholar
  30. 30.
    Rocksroh JK, Mauss S (2004) J Antimicrob Chemother 53:700 doi: 10.1093/jac/dkh161 CrossRefGoogle Scholar
  31. 31.
    Fan FRF, Bard AJ (1995) Science 270:1849 doi: 10.1126/science.270.5243.1849 CrossRefGoogle Scholar
  32. 32.
    Marcus RA (1965) J Chem Phys 43:679 doi: 10.1063/1.1696792 CrossRefGoogle Scholar
  33. 33.
    Rosokha SV, Newton MD, Head-Gordon M, Kochi JK (2006) CPPC 324:117Google Scholar
  34. 34.
    Cave RJ, Newton MD (1997) J Chem Phys 106:9213 doi: 10.1063/1.474023 CrossRefGoogle Scholar
  35. 35.
    Giese B (2000) Acc Chem Res 33:631 doi: 10.1021/ar990040b CrossRefGoogle Scholar
  36. 36.
    Lewerenz HJ (1993) J Electroanal Chem 356:121 doi: 10.1016/0022-0728(93)80515-J CrossRefGoogle Scholar
  37. 37.
    Schlag EW, Sheu S-Y, Yang D-Y, Selzle HL, Lin SH (2000) Proc Natl Acad Sci U S A 97:1068 doi: 10.1073/pnas.97.3.1068 CrossRefGoogle Scholar
  38. 38.
    Kambhampati P, Son DH, Kee TW, Barbara PF (2002) J Phys Chem A 106:2374 doi: 10.1021/jp014291p CrossRefGoogle Scholar
  39. 39.
    Paik DH, Lee IR, Yang D-S, Baskin JS, Zewail AH (2004) Science 306:672 doi: 10.1126/science.1102827 CrossRefGoogle Scholar
  40. 40.
    Coe JV, Earhart AD, Cohen MH, Hoffman GJ, Sarkas HW, Bowen KH (1997) J Phys Chem 107:6023 doi: 10.1063/1.474271 CrossRefGoogle Scholar
  41. 41.
    Gerischer H (1960) Z Phys Chem NF 6:223Google Scholar
  42. 42.
    Gerischer H (1961) Z Phys Chem NF 26:40Google Scholar
  43. 43.
    Lewerenz HJ (2008) Phys Status Solidi (in press)Google Scholar
  44. 44.
    v Helmholtz H (1879) Wiedemanns. Ann Phys 7:337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • H. J. Lewerenz
    • 1
  • K. Skorupska
    • 1
  • J. R. Smith
    • 2
  • S. A. Campbell
    • 2
  1. 1.Interface Engineering Group, Division of Solar EnergyHahn-Meitner-InstitutBerlinGermany
  2. 2.School of Pharmacy and Biomedical SciencesPortsmouth UniversityPortsmouthUK

Personalised recommendations