The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism

  • Víctor Agmo Hernández
  • Michael Hermes
  • Alexander Milchev
  • Fritz Scholz
Original Paper

Abstract

Using high-resolution chronoamperometric measurements, with sampling each 1.333 μs, the initial step of the adhesion-spreading of liposomes on a mercury electrode was studied. These measurements allow getting a deeper insight into the first interaction of the liposomes with the mercury electrode, and they show that the overall adhesion-spreading process at different potentials is partially controlled by a fast but weak interaction equilibrium resulting in a mixed diffusion- and reaction-kinetics-controlled mechanism of the overall reaction.

Keywords

Liposomes Chronoamperometry Adhesion-spreading Mercury electrode DMPC 

References

  1. 1.
    Lasic DD (1992) Am Sci 80:20Google Scholar
  2. 2.
    Lasic DD (1995) Applications of liposomes. In: Lipowski R, Sackmann E (eds) Structure and dynamics of membranes. From cells to vesicles. Elsevier, HollandGoogle Scholar
  3. 3.
    Terzano C, Allegra L, Alhaique F, Marianecci C, Carafa M (2005) Eur J Pharm Biopharm 59:57. doi:10.1016/j.ejpb.2004.06.010 CrossRefGoogle Scholar
  4. 4.
    Carafa M, Di Marzio L, Marianecci C, Cinque B, Lucania K, Kajiwara K, Cifone MG, Santucci E (2006) Eur J Pharm Sci 28:385. doi:10.1016/j.ejps.2006.04.009 CrossRefGoogle Scholar
  5. 5.
    Johansson E, Engvall C, Arfvidsson M, Lundahl P, Edwards K (2005) Biophys Chem 113:183. doi:10.1016/j.bpc.2004.09.006 CrossRefGoogle Scholar
  6. 6.
    Katragadda A, Bridgman R, Betageri G (2000) Cell Mol Biol Lett 5:483Google Scholar
  7. 7.
    Semple SC, Leone R, Wang J, Leng EC, Klimuk SK, Eisenhardt ML, Yuan Z, Edwards K, Maurer N, Hope MJ, Cullis PR, Ahkong Q (2005) J Pharm Sci 94:1024. doi:10.1002/jps.20332 CrossRefGoogle Scholar
  8. 8.
    Zhigaltsev IV, Maurer N, Edwards K, Karlsson G, Cullis PR (2006) J Control Release 110:378. doi:10.1016/j.jconrel.2005.10.011 CrossRefGoogle Scholar
  9. 9.
    Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305. doi:10.1016/S1388-2481(02)00279-5 CrossRefGoogle Scholar
  10. 10.
    Hellberg D, Scholz F, Schubert F, Lovrić M, Omanović D, Agmo Hernández V, Thede R (2005) J Phys Chem B 109:14715. doi:10.1021/jp050816s CrossRefGoogle Scholar
  11. 11.
    Miller IR, Rishpon J, Tenenbaum A (1976) Bioelectrochem Bioenerg 3:528. doi:10.1016/0302-4598(76)80043-8 CrossRefGoogle Scholar
  12. 12.
    Nelson A, Auffret N (1988) J Electroanal Chem 244:99. doi:10.1016/0022-0728(88)80098-6 CrossRefGoogle Scholar
  13. 13.
    Leermarkers FAM, Nelson A (1990) J Electroanal Chem 278:53. doi:10.1016/0022-0728(90)85123-M CrossRefGoogle Scholar
  14. 14.
    Nelson A, Leermarkers FAM (1990) J Electroanal Chem 278:73. doi:10.1016/0022-0728(90)85124-N CrossRefGoogle Scholar
  15. 15.
    Bizzotto D, Yang Y, Shepherd JL, Stoodley R, Agak J, Stauffer V, Lathuillière M, Akhtar AS, Chung E (2004) J Electroanal Chem 574:167. doi:10.1016/j.jelechem.2003.11.002 CrossRefGoogle Scholar
  16. 16.
    Agmo Hernández V, Scholz F (2006) Langmuir 22:10723. doi:10.1021/la060908o CrossRefGoogle Scholar
  17. 17.
    Agmo Hernández V, Scholz F (2008) Bioelectrochemistry (in press). doi:10.1016/j.bioelechem.2008.06.007
  18. 18.
    Agmo Hernández V, Scholz F (2008) Isr J Chem (in press)Google Scholar
  19. 19.
    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in Pascal. Cambridge University Press, Cambridge, MAGoogle Scholar
  20. 20.
    Lee J, Lentz BR (1998) Proc Natl Acad Sci USA 95:9274. doi:10.1073/pnas.95.16.9274 CrossRefGoogle Scholar
  21. 21.
    Zimmerberg J, Chernomordik LV (1999) Adv Drug Deliv Rev 38:197. doi:10.1016/S0169-409X(99)00029-0 CrossRefGoogle Scholar
  22. 22.
    Chanturiya A, Scaria P, Kuksenok O, Woodle MC (2002) Biophys J 82:3072CrossRefGoogle Scholar
  23. 23.
    Chizmadzhev YA, Kuzmin PI, Kumenko DA, Zimmerberg J, Cohen FS (2000) Biophys J 78:2241CrossRefGoogle Scholar
  24. 24.
    Heuvingh J, Pincet F, Cribier S (2004) Eur Phys J E 14:269. doi:10.1140/epje/i2003-10151-2 CrossRefGoogle Scholar
  25. 25.
    Kozlovsky Y, Chernomordik LV, Kozlov MM (2002) Biophys J 83:2634CrossRefGoogle Scholar
  26. 26.
    Monck JR, Fernandez JM (1992) J Cell Biol 119:1395. doi:10.1083/jcb.119.6.1395 CrossRefGoogle Scholar
  27. 27.
    Žutić V, Svetličić V, Zimmerman AH, DeNardis NI, Frkanec R (2007) Langmuir 23:8647. doi:10.1021/la063712x CrossRefGoogle Scholar
  28. 28.
    Agmo Hernández V, Scholz F (2007) Langmuir 23:8650. doi:10.1021/la7009435 CrossRefGoogle Scholar
  29. 29.
    Maisonhaute E, White PC, Compton RG (2001) J Phys Chem B 105:12087. doi:10.1021/jp012437e CrossRefGoogle Scholar
  30. 30.
    Maisonhaute E, Brookes BA, Compton RG (2002) J Phys Chem B 106:3166. doi:10.1021/jp013448a CrossRefGoogle Scholar
  31. 31.
    Banks CE, Rees NV, Compton RG (2002) J Phys Chem B 106:5810. doi:10.1021/jp020696d CrossRefGoogle Scholar
  32. 32.
    Rees NV, Banks CE, Compton RG (2004) J Phys Chem B 108:18391. doi:10.1021/jp040602v CrossRefGoogle Scholar
  33. 33.
    Davies TJ, Lowe ER, Wilkins SJ, Compton RG (2005) ChemPhysChem 6:1340. doi:10.1002/cphc.200500152 CrossRefGoogle Scholar
  34. 34.
    Fietkau N, Du G, Matthews SM, Johns ML, Fisher AC, Compton RG (2007) J Phys Chem C 111:7801. doi:10.1021/jp070429d CrossRefGoogle Scholar
  35. 35.
    Omanović D. Signal Counter. Rudjer Boskovic Institute, Zagreb, Croatia (E-mail: omanovic@irb.hr)Google Scholar
  36. 36.
    Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN (1996) Proc Natl Acad Sci USA 93:11443. doi:10.1073/pnas.93.21.11443 CrossRefGoogle Scholar
  37. 37.
    Berndl K, Käs J, Lipowsky R, Sackmann E (1990) Europhys Lett 13:659. doi:10.1209/0295-5075/13/7/015 CrossRefGoogle Scholar
  38. 38.
    Sackmann E (1994) FEBS Lett 346:3. doi:10.1016/0014-5793(94)00484-6 CrossRefGoogle Scholar
  39. 39.
    Tsekov R, Kovač S, Žutić V (1999) Langmuir 15:5649. doi:10.1021/la980944q CrossRefGoogle Scholar
  40. 40.
    Milchev A (2002) Electrocrystallization. Fundamentals of nucleation and growth. Kluwer, Boston, MAGoogle Scholar
  41. 41.
    Milchev A (2008) Russ J Electrochem 44:619. doi:10.1134/S1023193508060025 CrossRefGoogle Scholar
  42. 42.
    Dausheva MR, Songina OA (1973) Russ Chem Rev 42:136. doi:10.1070/RC1973v042n02ABEH002570 CrossRefGoogle Scholar
  43. 43.
    Evans E, Rawicz W (1990) Phys Rev Lett 64:2094. doi:10.1103/PhysRevLett.64.2094 CrossRefGoogle Scholar
  44. 44.
    Sackmann E (1995) Physical basis of self-organization and function of membranes: physics of vesicles. In: Lipowski R, Sackmann E (eds) Structure and dynamics of membranes. From cells to vesicles. Elsevier, HollandGoogle Scholar
  45. 45.
    Lipowski R (1998) In: Trigg GL (ed) Encyclopedia of applied physics. vol. 23. Wiley, New YorkGoogle Scholar
  46. 46.
    Miller IR (1981) Charge transport in lipid layers and in biological membranes. In: Milazzo G (ed) Topics in bioelectrochemistry and bioenergetics. Wiley, ChichesterGoogle Scholar
  47. 47.
    Nelson A, Benton A (1986) J Electroanal Chem 202:253. doi:10.1016/0022-0728(86)90123-3 CrossRefGoogle Scholar
  48. 48.
    Moncelli MR, Becucci L, Guidelli R (1994) Biophys J 66:1969CrossRefGoogle Scholar
  49. 49.
    Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, Satija S (2004) Biophys J 86:1763CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Víctor Agmo Hernández
    • 1
  • Michael Hermes
    • 2
  • Alexander Milchev
    • 3
  • Fritz Scholz
    • 2
  1. 1.Department of Physical and Analytical Chemistry, Division of Physical ChemistryUppsala UniversityUppsalaSweden
  2. 2.Institut für BiochemieUniversität GreifswaldGreifswaldGermany
  3. 3.Rostislaw Kaischew Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations