Journal of Solid State Electrochemistry

, Volume 13, Issue 6, pp 843–847 | Cite as

Electrodeposited magnetite with large magnetoresistive response at room temperature and low magnetic fields

  • R. G. Delatorre
  • R. C. da Silva
  • J. S. Cruz
  • N. Garcia
  • A. A. Pasa
Original Paper

Abstract

Iron oxide layers were obtained by electrodeposition method on Cu substrates. The electrolyte containing Fe2(SO4)3, NaOH, and Triethanolamine was stirred at a temperature of 65 °C and the depositions were performed potentiostatically in a conventional three electrode cell at a potential of −1.1 V vs SCE. Parallel magnetoresistance values of −6.2% at 3 kOe were obtained for measurements at room temperature. The magnetoresistive curves showed reduced hysteresis loop, temporal stability, and no saturation for the maximum applied magnetic field. Our results show that for the case of the granular magnetite that we grow, the AMR has opposite sign of that of 3d magnetic alloys. Allied to high values of resistivity, these properties are potentially adequate for the development of magnetic devices such as field sensors. Additional characterization was obtained by using scanning electron microscopy and vibrating sample magnetometry.

Notes

Acknowledgements

The present research was supported by FAPESC, CNPQ and CAPES (Brazil), CICyT (Spain) and MUNDIS project (EC). The authors wish to thank M. F. Alamini and D. Aragão for helping with the preparation of the electrodeposited layers at the LFFS/UFSC. RGD is currently receiving a post-doc stipend from CNPQ. JSC present address is Facultad de Quimica/Materiales, Universidad Autónoma de Querétaro, México.

References

  1. 1.
    Lui H, Jiang EY, Bai HL, Zheng RK, Wei HL, Zhang XX (2003) Appl Phys Lett 83:3531 doi: 10.1063/1.1622440 CrossRefGoogle Scholar
  2. 2.
    Hong JP, Lee SB, Jung YW, Lee JH, Yoon KS, Kim KW et al (2003) Appl Phys Lett 83:1590 doi: 10.1063/1.1604466 CrossRefGoogle Scholar
  3. 3.
    Mi WB, Shen JJ, Jiang EY, Bai HL (2007) Acta Mater 55:1919 doi: 10.1016/j.actamat.2006.10.050 CrossRefGoogle Scholar
  4. 4.
    Eerenstein W, Palstra TTM, Saxena SS, Hibma T (2002) Phys Rev Lett 88:2472041 doi: 10.1103/PhysRevLett.88.247204 CrossRefGoogle Scholar
  5. 5.
    Ogale SB, Ghosh K, Sharma RP, Greene RL, Ramesh R, Venkatesan T (1998) Phys Rev B 57:7823 doi: 10.1103/PhysRevB.57.7823 CrossRefGoogle Scholar
  6. 6.
    Bohra M, Venkataramani N, Prasad S, Kumar N, Misra DS, Sahoo SC et al (2007) J Magn Magn Mater 310:2242 doi: 10.1016/j.jmmm.2006.10.822 CrossRefGoogle Scholar
  7. 7.
    Kitamoto Y, Nakayama Y, Abe M (2000) J Appl Phys 87:7130 doi: 10.1063/1.372953 CrossRefGoogle Scholar
  8. 8.
    Nishimura K, Kohara Y, Kitamoto Y, Abe M (2000) J Appl Phys 87:7127 doi: 10.1063/1.372952 CrossRefGoogle Scholar
  9. 9.
    Terrier C, Abid M, Arm C, Serrano-Guisan S, Gravier L, Ansermet J-P (2005) J Appl Phys 98:086102 doi: 10.1063/1.2099534 CrossRefGoogle Scholar
  10. 10.
    Kothari HM, Kulp EA, Limmer SJ, Poizot P, Bohannan EW, Switzer JA (2006) J Mater Res 21:293 doi: 10.1557/jmr.2006.0030 CrossRefGoogle Scholar
  11. 11.
    Coey JMD, Chien CL (2003) MRS Bull 28:720Google Scholar
  12. 12.
    Coey JMD, Berkowitz AE, Balcells LL, Putris FF, Parker FT (1998) Appl Phys Lett 72:734 doi: 10.1063/1.120859 CrossRefGoogle Scholar
  13. 13.
    Margulies DT, Parker FT, Rudee ML, Spada FE, Chapman JN, Aitchison PR et al (1997) Phys Rev Lett 79:5162 doi: 10.1103/PhysRevLett.79.5162 CrossRefGoogle Scholar
  14. 14.
    Hibma T, Voogt FC, Niesen L, van der Heijden PAA, de Jonge WJM, Donkers JJTM et al (1999) J Appl Phys 85:5291 doi: 10.1063/1.369857 CrossRefGoogle Scholar
  15. 15.
    Zeng H, Black CT, Sandstrom RL, Rice PM, Murray CB, Sun S (2006) Phys Rev B 73:020402 doi: 10.1103/PhysRevB.73.020402 CrossRefGoogle Scholar
  16. 16.
    Wang W, Yu M, Batzill M, He J, Diebold U, Tang J (2006) Phys Rev B 73:124412Google Scholar
  17. 17.
    Lu ZL, Xu MX, Zou WQ, Wang S, Liu XC, Lin YB et al (2007) Appl Phys Lett 91:102508 doi: 10.1063/1.2783191 CrossRefGoogle Scholar
  18. 18.
    McGuire TR, Potter RI (1975) IEEE Trans Magn 11:1018 doi: 10.1109/TMAG.1975.1058782 CrossRefGoogle Scholar
  19. 19.
    Lehmann HW (1967) Phys Rev 163:488 doi: 10.1103/PhysRev.163.488 CrossRefGoogle Scholar
  20. 20.
    Chikazumi S (1997) Physics of ferromagnetism, 2nd edn. Oxford Science publications, New YorkGoogle Scholar
  21. 21.
    Ziese M, Blythe HJ (2000) J Phys Condens Matter 12:13 doi: 10.1088/0953–8984/12/1/302 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. G. Delatorre
    • 1
  • R. C. da Silva
    • 2
  • J. S. Cruz
    • 2
  • N. Garcia
    • 1
  • A. A. Pasa
    • 1
    • 2
  1. 1.Laboratorio de Fisica de Sistemas Pequeños y NanotecnologíaCSICMadridSpain
  2. 2.Laboratório de Filmes Finos e SuperfíciesUFSCFlorianópolisBrazil

Personalised recommendations