Advertisement

Journal of Solid State Electrochemistry

, Volume 13, Issue 1, pp 137–148 | Cite as

Synthesis and characterization of high-integrity solid-contact polymeric ion sensors

  • Roland De MarcoEmail author
  • Elaine Jee
  • Kathryn Prince
  • Ernö Pretsch
  • Eric Bakker
Original Paper

Abstract

High-integrity solid-contact (SC) polymeric ion sensors have been produced by using spin casting and electropolymerization techniques in the preparation of the SC employing the conductive polymer, poly(3-octylthiophene) (POT). The physical and chemical integrity of the POT SCs have been evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrochemical stability of SC polymeric ion sensors has been investigated using electrochemical impedance spectroscopy (EIS). The results of this study demonstrate that electropolymerization and spin casting methods also comprising annealing of the synthesized SC film are capable of producing SCs that are relatively free of imperfections such as pores and pinholes. This leads to electrochemically stable and robust polymeric ion sensors where the SC/sensor interface is resistant to the formation of a detrimental water layer that normally gives rise to spurious ion fluxes and a degradation in the sensitivity and selectivity of the SC polymeric ion sensor.

Keywords

Solid contact ion-selective electrode Conductive polymer Surface analysis Polymeric membrane ion-selective electrode 

Notes

Acknowledgments

The authors acknowledge the financial support of the Australian Research Council (LX0454397 and DP0665400), Australian Institute of Nuclear Science and Engineering, National Institutes of Health (EB002189) and Swiss National Foundation. We also thank Mr. Armand Atanacio at ANSTO for assistance with the SIMS research, and Mr. Chris Bassell at the University of South Australia for assistance with the XPS analyses.

References

  1. 1.
    Liu S, Piwnica-Worms D, Lieberman M (1990) J Gen Physiol 96:1247 doi: 10.1085/jgp.96.6.1247 CrossRefGoogle Scholar
  2. 2.
    Silanikove N, Shapiro F, Shamay A (2003) J Dairy Res 70:241 doi: 10.1017/S0022029903006083 CrossRefGoogle Scholar
  3. 3.
    Wang J (1999) Anal Chem 71:328R doi: 10.1021/a1999905e CrossRefGoogle Scholar
  4. 4.
    Bakker E, Pretsch E (2007) Angew Chem Int Edn 46:2CrossRefGoogle Scholar
  5. 5.
    Adhikari B, Majumdar S (2004) Prog Polym Sci 29:699 doi: 10.1016/j.progpolymsci.2004.03.002 CrossRefGoogle Scholar
  6. 6.
    Konopka A, Sokalski T, Michalska A, Lewenstam A, Maj-Zurawska M (2004) Anal Chem 76:6410 doi: 10.1021/ac0492158 CrossRefGoogle Scholar
  7. 7.
    Bakker E, Bühlmann P, Pretsch E (1997) Chem Rev 97:3083 doi: 10.1021/cr940394a CrossRefGoogle Scholar
  8. 8.
    Malon A, Vigassy T, Bakker E, Pretsch E (2006) J Am Chem Soc 128:8154 doi: 10.1021/ja0625780 CrossRefGoogle Scholar
  9. 9.
    Chumbimuni-Torres KY, Dai Z, Rubinova N, Xiang Y, Pretsch E, Wang J et al (2006) J Am Chem Soc 128:13676 doi: 10.1021/ja065899k CrossRefGoogle Scholar
  10. 10.
    Thurer R, Vigassy T, Hirayama M, Wang J, Bakker E, Pretsch E (2007) Anal Chem 79:5107 doi: 10.1021/ac070932m CrossRefGoogle Scholar
  11. 11.
    Bobacka J, Lindfors T, McCarrick M, Ivaska A, Lewenstam A (1995) Anal Chem 67:3819 doi: 10.1021/ac00116a034 CrossRefGoogle Scholar
  12. 12.
    Cadogan A, Gao Z, Lewenstam A, Ivaska A (1992) Anal Chem 64:2496 doi: 10.1021/ac00045a007 CrossRefGoogle Scholar
  13. 13.
    Bobacka J (1999) Anal Chem 71:4932 doi: 10.1021/ac990497z CrossRefGoogle Scholar
  14. 14.
    De Marco R, Veder JP, Clarke G, Nelson A, Prince K, Pretsch E et al (2008) Phys Chem Chem Phys 10:73 doi: 10.1039/b714248j CrossRefGoogle Scholar
  15. 15.
    Sutter J, Radu A, Peper S, Bakker E, Pretsch E (2004) Anal Chim Acta 523:53 doi: 10.1016/j.aca.2004.07.016 CrossRefGoogle Scholar
  16. 16.
    Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Electroanalysis 12:1286 DOI 10.1002/1521-4109(200011)12:16<1286::AID-ELAN1286>3.0.CO;2-QCrossRefGoogle Scholar
  17. 17.
    Bobacka J, Ivaska A, Lewenstam A (2008) Chem Rev 108:329 doi: 10.1021/cr068100w CrossRefGoogle Scholar
  18. 18.
    Sutter J, Lindner E, Gyurcsanyi RE, Pretsch E (2004) Anal Bioanal Chem 380:7 doi: 10.1007/s00216-004-2737-4 CrossRefGoogle Scholar
  19. 19.
    Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E (2006) Anal Chem 78:1318 doi: 10.1021/ac050749y CrossRefGoogle Scholar
  20. 20.
    Bobacka J, McCarrick M, Lewenstam A, Ivaska A (1994) Analyst (Lond) 119:1985 doi: 10.1039/an9941901985 CrossRefGoogle Scholar
  21. 21.
    Skompska M, Siwiec D, Kudelski A, Zagórska M (1999) Synth Met 101:35 doi: 10.1016/S0379-6779(98)01045-5 CrossRefGoogle Scholar
  22. 22.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MNGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Roland De Marco
    • 1
    Email author
  • Elaine Jee
    • 1
  • Kathryn Prince
    • 2
  • Ernö Pretsch
    • 3
  • Eric Bakker
    • 1
  1. 1.Department of Applied Chemistry, Nanochemistry Research InstituteCurtin University of TechnologyPerthAustralia
  2. 2.Australian Nuclear Science and Technology Organization (ANSTO)MenaiAustralia
  3. 3.Institute of Biogeochemistry & Pollutant DynamicsETH ZürichZürichSwitzerland

Personalised recommendations